Cho phân số C = n/n - 4 ( n e Z, n khác 4 ) Tìm tất cả các số nguyên của n để C là số nguyên
CẦN GẤP Ạ !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các giá trị của n là:0;2;3;5;6;8
Ai thấy hay thì chọn đúng
Còn bạn muốn biết thêm thì gửi tin nhắn cho mình
\(B=\dfrac{n}{n-4}=\dfrac{n-4+4}{n-4}=1+\dfrac{4}{n-4}\Rightarrow n-4\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n - 4 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 5 | 3 | 6 | 2 | 8 | 0 |
a, để B là phân số thì n khác 4
b, n/n-4 = 1+ 4/n-4 (dạng hỗn số)
Vì n thuộc Z => n-4 thuộc Ư(4)={1;-1;2;-2;4;-4} => n-4 thuộc Z
Ta có bảng sau:
n-4 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 5 | 3 | 6 | 2 | 8 | 0 |
TM | TM | TM | TM | TM | TM |
Lời giải:
a. Để $B$ là phân số thì $n-4\neq 0$
$\Rightarrow n\neq 4$
b. Với $n$ nguyên, để $B$ nguyên thì:
$n\vdots n-4$
$\Rightarrow (n-4)+4\vdots n-4$
$\Rightarrow 4\vdots n-4$
$\Rightarrow n-4\in \left\{\pm 1; \pm 2; \pm 4\right\}$
$\Rightarrow n\in \left\{5; 3; 6; 2; 8; 0\right\}$
a,Không biết
b,Vì B có giá trị nguyên
suy ra n chia hết n-4
mà n chia hết cho n
suy ra n chia hết cho 4
Vậy n thuộc B(4)
a.Ta có để B là một phân số thì n-4 khác o
=>n>4
Vậy n>4 để B là một phân số
b.NX :Dể B có giá trị nguyên =>n chia hết cho n-4
Vì n-4 chia hết cho n-4 và n chia hết cho n-4
=>n-(n-4) chia hết cho n-4
=> n-4 là ước của4={1;-1;-2;2;4;-4}
=> ta có bảng phan tích sau
n-4 1 -1 2 -2 4 -4
n 5 3 6 2 8 0
Vậy n thuộc {5;3;6;2;8;0}
a) Với \(n\in Z\)thì để \(\frac{5}{n-4}\)có giá trị là số nguyên
\(\Rightarrow5⋮n-4\)
\(\Rightarrow n-4\)là ước của \(5\)
Mà các ước của \(5\) là : \(5;1;-1;-5\)
Ta có bảng sau :
\(n-4\) | \(5\) | \(1\) | \(-1\) | \(-5\) |
\(n\) | \(9\) | \(5\) | \(3\)\(\) | \(-1\) |
\(KL\) | \(TM\) | \(TM\) | \(TM\) | \(TM\) |
Vậy \(n\in\left\{9;5;3;-1\right\}\)thì \(\frac{5}{n-4}\)có giá trị là số nguyên.
b) Với \(n=5\)
\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{5-4}=5\)
Với \(n=-1\)
\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{\left(-1\right)-4}=-1\)
\(C=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)
Để \(C\in Z\Leftrightarrow1+\frac{4}{n-4}\in Z\Leftrightarrow\frac{4}{n-4}\in Z\)
\(\Leftrightarrow n-4\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow n\in\left\{5;3;6;2;8;0\right\}\)
.....
\(C=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)
Vì \(1\inℤ\)\(\Rightarrow\)Để \(C\inℤ\)thì \(\frac{4}{n-4}\inℤ\)
\(\Rightarrow n-4\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Leftrightarrow n\in\left\{0;2;3;5;6;8\right\}\)
Vậy \(n\in\left\{0;2;3;5;6;8\right\}\)