Cho hệ phương trình
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
Tim mm để hệ phương trình trên có nghiệm duy nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mx+y=m
<=>mx-m=-y
<=>m(x-1)=-y(1)
x+my=1
<=>x-1=-my
<=>m(x-1)=-m^2y(2)
Thay (1) vào (2) ta có:
-y=-m^2y
<=> y=m^2y
<=>m^2=1
=>m thuộc{1;-1}
Vậy m thuộc{-1;1}
Để hệ pt có nghiệm duy nhất thì : a/a' # b/b' => m/1 # 1/m
=> m^2 # 1 => m # 1 hoặc m # -1
\(\hept{\begin{cases}x-my=2\left(1\right)\\mx-4y=m-2\end{cases}}\Leftrightarrow\hept{\begin{cases}mx-m^2y=2m\left(2\right)\\mx-4y=m-2\left(3\right)\end{cases}}\)
Lấy (2) - (3) => \(\left(4-m^2\right)y=m+2\) (*)
Để hpt có nghiệm duy nhất <=> pt(*) có nghiệm duy nhất <=> \(4-m^2\ne0\Leftrightarrow m\ne\pm2\)
\(\left(\text{*}\right)\Rightarrow y=\frac{m+2}{4-m^2}=\frac{m+2}{\left(2+m\right)\left(2-m\right)}=\frac{1}{2-m}\)
\(\left(1\right)\Rightarrow x=2+my=2+m\cdot\frac{1}{2-m}=\frac{4-2m+m}{2-m}=\frac{4-m}{2-m}\)
Ta có: \(y-x=\frac{1}{2-m}-\frac{4-m}{2-m}=\frac{1-4+m}{2-m}=\frac{m-3}{2-m}\)
Để \(y>x\Leftrightarrow y-x>0\) hay \(\frac{m-3}{2-m}>0\)
TH1: \(\hept{\begin{cases}m-3>0\\2-m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>3\\m< 2\end{cases}}\) (vô lí)
TH2: \(\hept{\begin{cases}m-3< 0\\2-m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< 3\\m>2\end{cases}}\Leftrightarrow2< m< 3\)(tm)
Vậy ...
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
\(\Leftrightarrow\) \(\hept{\begin{cases}y=m-mx\left(1\right)\\x+my=1\left(2\right)\end{cases}}\)
Thế (1) vào (2) ta có: x+m(m-mx)=1
\(\Leftrightarrow\)x+m2-m2x=1
\(\Leftrightarrow\)x(1-m2)+(m2-1)=0
\(\Leftrightarrow\)(x-1)(1-m2)=0
Ta biện luận phương trình trên:
+)Với m\(\ne\)\(\pm1\) thì hpt có 1 n0 duy nhất là (x;y):(1;0)
+)Với m = \(\pm1\) thì hpt có vô số nghiệm là (x;y):(x;\(\pm1\))
Vậy .....................
bạn tự hoàn thiện nha
chúc bạn học tốt (đừng quên k cho mình nhé! thank you very much)