K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

P/s : Sửa đề : Cho x > y > 1 và x5 + y5 = x - y . Chứng minh rằng : x4 + y4 < 1

+)Ta có : x4 + y4 < x4 + x3y + x2y2 + xy3 + y4

Mà x > y > 1 \( \implies\) x - y > 0 

\( \implies\) ( x - y ) ( x4 + y) < ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) ( * )

+)Ta có : ( x - y ) ( x4 + x3y + x2y2 + xy3 + y

            = x ( x4 + x3y + x2y2 + xy3 + y) - y ( x4 + x3y + x2y2 + xy3 + y

            = x5 + x4y + x3y2 + x2y+ xy4 - x4y -  x3y2 - x2y3 -  xy4 - y5

            = x5 - y5

\( \implies\) ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) = x5 - y5 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  ( x - y ) ( x4 + y) <  x5 - y5

Mà   x5 - y5 < x5 + y5 

\( \implies\) ( x - y ) ( x4 + y) <  x5 - y5

\( \implies\) ( x - y ) ( x4 + y) < x - y 

\( \implies\)  x4 + y4 < 1 ( đpcm ) 

22 tháng 3 2020

                                                      Bài giải

\(x^5+y^5=x-y\)

\(x^5-x+y^5+y=0\)

\(x\left(x^4-1\right)+y\left(y^4+1\right)=0\)

Đề sai nha !

+)Ta có : x4 + y4 < x4 + x3y + x2y2 + xy3 + y4

Mà x > y > 1 \( \implies\) x - y > 0 

\( \implies\) ( x - y ) ( x4 + y) < ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) ( * )

+)Ta có : ( x - y ) ( x4 + x3y + x2y2 + xy3 + y

            = x ( x4 + x3y + x2y2 + xy3 + y) - y ( x4 + x3y + x2y2 + xy3 + y

            = x5 + x4y + x3y2 + x2y+ xy4 - x4y -  x3y2 - x2y3 -  xy4 - y5

            = x5 - y5

\( \implies\) ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) = x5 - y5 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  ( x - y ) ( x4 + y) <  x5 - y5

Mà   x5 - y5 < x5 + y5 

\( \implies\) ( x - y ) ( x4 + y) <  x5 - y5

\( \implies\) ( x - y ) ( x4 + y) < x - y 

\( \implies\)  x4 + y4 < 1 ( đpcm ) 

Hình như là phải: Cho \(x>y>0\) chứ nhỉ?

2 tháng 2 2020

Sao hỏi không thấy bạn hồi âm nhỉ?

Câu này mình nghĩ sai đề rồi. Mình nghĩ đề vậy nè:

\(Cho:x>y>0\)\(x^5+y^5=x-y.Cmr:x^4-y^4< 1\)

~~~~~~ Bài làm ~~~~~~~

Ta có: \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)

Lại có: \(x-y=x^5+y^5\Rightarrow\left(x^5+y^5\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=\left(x^5-y^5\right).1\)

Mà: \(x>y>0\) nên:

\(\Rightarrow x^5\ge y^5\ge0\Rightarrow x^5+y^5>x^5-y^5\)

\(\Rightarrow x^4+x^3y+x^2y^2+xy^3+y^4< 1\)

Lại có: \(x^3y+x^2y+xy^3>0\) nên:

\(\Rightarrow x^4+y^4< 1\left(đpcm\right)\)

1 tháng 5 2015

+) Áp dụng BĐT Cô - si cho 4 số dương x; x; y; z ta có:

\(x+x+y+z\ge4\sqrt[4]{x.x.y.z}\)

=> 2x + y + z \(\ge4\sqrt[4]{x.x.y.z}\)                  (1)

Với 4 số dương \(\frac{1}{x};\frac{1}{x};\frac{1}{y};\frac{1}{z}\) ta có: \(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge4.\sqrt[4]{\frac{1}{x}.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}\)    (2)

Từ (1)(2) => \(\left(2x+y+z\right)\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge4.\sqrt[4]{x.x.y.z}4.\sqrt[4]{\frac{1}{x}.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=16\)

=> \(\frac{1}{2x+y+z}\le\frac{1}{16}.\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\) (*)

Tương tự, ta có: \(\frac{1}{x+2y+z}\le\frac{1}{16}.\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)   (**)

\(\frac{1}{x+y+2z}\le\frac{1}{16}.\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)                           (***)

Từ (*)(**)(***) => Vế trái \(\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{4}.4=1\)

=> đpcm

+) Áp dụng BĐT Cô - si cho 4 số dương x; x; y; z ta có:

x+x+y+z≥44√x.x.y.z

=> 2x + y + z ≥44√x.x.y.z                  (1)

Với 4 số dương 1x ;1x ;1y ;1z  ta có: 1x +1x +1y +1z ≥4.4√1x .1x .1y .1z     (2)

Từ (1)(2) => (2x+y+z)(1x +1x +1y +1z )≥4.4√x.x.y.z4.4√1x .1x .1y .1z =16

=> 12x+y+z ≤116 .(2x +1y +1z ) (*)

Tương tự, ta có: 1x+2y+z ≤116 .(1x +2y +1z )   (**)

1x+y+2z ≤116 .(1x +1y +2z )                           (***)

Từ (*)(**)(***) => Vế trái ≤116 (4x +4y +4z )=14 .(1x +1y +1z )=14 .4=1

=> đpcm

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=\frac{1}{2}$