K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

GIẢI TRÍ CUỐI TUẦN CÙNG HOC24 Bài 1: Giải phương trình sau: \( \sqrt {16 - {x^2}} + \left( {x + 2} \right)\left| {\dfrac{2}{x} - 1} \right| = 4\sqrt {\dfrac{2}{x} - \dfrac{1}{{{x^2}}}} \\ \) Bài 2: Cho \(xyz=1\). Tính giá trị biểu thức sau: \(P = \dfrac{{x + 2xy + 1}}{{x + xy + xz + 1}} + \dfrac{{y + 2yz + 1}}{{y + yz + yx + 1}} + \dfrac{{z + 2zx + 1}}{{z + zx + zy + 1}}\) Bài 3: \(\Delta ABC\) vuông tại \(A\) có ba cạnh \(a,b,c\) (\(a-\) cạnh huyền). Chứng minh...
Đọc tiếp

GIẢI TRÍ CUỐI TUẦN CÙNG HOC24

Bài 1: Giải phương trình sau: \( \sqrt {16 - {x^2}} + \left( {x + 2} \right)\left| {\dfrac{2}{x} - 1} \right| = 4\sqrt {\dfrac{2}{x} - \dfrac{1}{{{x^2}}}} \\ \)

Bài 2: Cho \(xyz=1\). Tính giá trị biểu thức sau: \(P = \dfrac{{x + 2xy + 1}}{{x + xy + xz + 1}} + \dfrac{{y + 2yz + 1}}{{y + yz + yx + 1}} + \dfrac{{z + 2zx + 1}}{{z + zx + zy + 1}}\)

Bài 3: \(\Delta ABC\) vuông tại \(A\) có ba cạnh \(a,b,c\) (\(a-\) cạnh huyền). Chứng minh rằng: \(\left( {1 + \dfrac{a}{b}} \right)\left( {1 + \dfrac{a}{c}} \right) \geqslant 3 + 2\sqrt 2 \)

*LƯU Ý:

- Với những bài đưa ra ý tưởng hay được 1GP

- Với những lời giải đúng và trình bày bằng công thức được 2GP

- Loại bỏ những trường hợp sao chép (cũng tìm thử trên mạng có không nhé! Tại cũng chưa tìm)

- Không hạn chế số lượng bài gửi. Có nhiều cách gửi nhiều lần, đạt nhiều GP

CHÚC CÁC BẠN CUỐI TUẦN VUI VẺ, HỌC TẬP ĐẠT THÀNH TÍCH TỐT.

6
22 tháng 3 2020

Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)=1+\frac{a}{c}+\frac{a}{b}+\frac{a^2}{bc}\)

\(1+\frac{a}{c}+\frac{a}{b}+\frac{b^2+c^2}{bc}=1+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}\)

Áp dụng bất đẳng thức Cosi vào 3 số "1"; "\(\frac{b}{c}\)";"\(\frac{c}{b}\)" có:

1+\(\frac{b}{c}+\frac{c}{b}\ge3\sqrt{1.\frac{b}{c}.\frac{c}{b}}\ge3\)

Hay 1 + \(\frac{a^2}{bc}\ge3\:\)(*)

\(\Leftrightarrow\frac{a^2}{bc}\ge2\) (1)

Áp dụng bất đẳng thức Cosi vào 2 số "\(\frac{a}{c}\)";"\(\frac{a}{b}\)" có:

\(\frac{a}{c}+\frac{a}{b}\ge2\sqrt{\frac{a}{c}.\frac{a}{b}}=2\sqrt{\frac{a^2}{bc}}\) (2)

Từ (1),(2) suy ra: \(\frac{a}{c}+\frac{a}{b}\ge2\sqrt{2}\) (**)

Cộng (*),(**) vế theo vế ta có: \(1+\frac{a}{c}+\frac{a}{b}+\frac{a^2}{bc}\ge3+2\sqrt{2}\)

Hay \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)\ge3+2\sqrt{2}\left(dpcm\right)\)

22 tháng 3 2020

Đổi tên thành "Thử thách cuối tuần" chứ mấy bài này không giải trí mấy.

Bài 1:

Căng quá, đang đi cứu trợ :))

Bài 2:

Xét \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{1+y+z+yz}=\frac{yz+y+z+1+y-z}{\left(y+1\right)\left(z+1\right)}\)

\(=\frac{\left(y+1\right)\left(z+1\right)+y-z}{\left(y+1\right)\left(z+1\right)}=1+\frac{y-z}{\left(y+1\right)\left(z+1\right)}=1+\frac{\left(y+1\right)-\left(z+1\right)}{\left(y+1\right)\left(z+1\right)}=1+\frac{1}{z+1}-\frac{1}{y+1}\)

Vì vai trò của x, y, z là như nhau nên chứng minh tương tự với 3 phân thức còn lại ta cũng có:

\(\frac{y+2yz+1}{y+yz+yx+1}=1+\frac{1}{x+1}-\frac{1}{z+1}\)

\(\frac{z+2zx+1}{z+zx+zy+1}=1+\frac{1}{y+1}-\frac{1}{x+1}\)

Cộng theo vế 3 đẳng thức ta có:

\(P=1+1+1+\left(\frac{1}{x+1}-\frac{1}{x+1}\right)+\left(\frac{1}{y+1}-\frac{1}{y+1}\right)+\left(\frac{1}{z+1}-\frac{1}{z+1}\right)=3\)

Vậy....

Bài 3:

Vì tam giác ABC vuông tại A nên theo Pytago ta có:

\(a^2=b^2+c^2\Leftrightarrow a=\sqrt{b^2+c^2}\)

\(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)=1+\frac{a}{c}+\frac{a}{b}+\frac{a^2}{bc}=1+a\cdot\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{b^2+c^2}{bc}\) (1)

Áp dụng BĐT Cô-si:

+) \(b^2+c^2\ge2bc\Leftrightarrow\frac{b^2+c^2}{bc}\ge2\Leftrightarrow\frac{b^2+c^2}{bc}+1\ge3\) (2)

+) \(\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}}\Leftrightarrow\left(\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{4}{bc}\) (3)

Từ (2) và (3) ta có: \(\left(b^2+c^2\right)\left(\frac{1}{b}+\frac{1}{c}\right)^2\ge2bc\cdot\frac{4}{bc}=8\)

\(\Leftrightarrow\sqrt{b^2+c^2}\cdot\left(\frac{1}{b}+\frac{1}{c}\right)\ge2\sqrt{2}\)

\(\Leftrightarrow a\cdot\left(\frac{1}{b}+\frac{1}{c}\right)\ge2\sqrt{2}\) (4)

Từ (1), (2) và (4) suy ra \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)\ge3+2\sqrt{2}\) ( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow b=c\) hay tam giác ABC vuông cân tại A.

7 tháng 11 2023

\(a,\sqrt{\left(x-1\right)^2-\left(x^2-3\right)}=3\)

\(\Leftrightarrow\left(x-1\right)^2-\left(x^2-3\right)=9\)

\(\Leftrightarrow x^2-2x+1-x^2+3=9\)

\(\Leftrightarrow4-2x=9\)

\(\Leftrightarrow x=\dfrac{-5}{2}\)

\(b,\dfrac{x+3}{x}+\dfrac{x-3}{x-2}=2\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(2x-2\right)}{x\left(x-2\right)}=2\)

\(\Leftrightarrow\left(x-3\right)\left(2x-2\right)=2x\left(x-2\right)\)

\(\Leftrightarrow2x^2-8x+6=2x^2-4x\)

\(\Leftrightarrow-4x=-6\)

\(\Leftrightarrow x=1,5\)

7 tháng 11 2023

a) \(\sqrt{(x-1)^{2}- x^2-3)}=3\)

\(\Leftrightarrow \sqrt{x^2-2x+1-x^2+3}=3\)

\(\Leftrightarrow \sqrt{4-2x}=3\)

\(\Leftrightarrow 4-2x = 9\)

\(\Leftrightarrow 2x=-5\)

\(\Leftrightarrow x=-2.5\)

Vậy S = {-2.5}

28 tháng 8 2021

\(1,ĐKx\ge5\)

\(\sqrt{\left(x-5\right)\left(x+5\right)}+2\sqrt{x-5}=3\sqrt{x+5}+6\)

\(\Rightarrow\sqrt{x-5}\left(\sqrt{x+5}+2\right)-3\left(\sqrt{x+5}+2\right)=0\)

\(\Rightarrow\left(\sqrt{x+5}+2\right)\left(\sqrt{x-5}-3\right)=0\)

\(\left[{}\begin{matrix}\sqrt{x+5}=-2loại\\\sqrt{x-5}=3\end{matrix}\right.\)\(\Rightarrow x-5=9\Rightarrow x=14\)(TMĐK)

2a,ĐK \(x\ge0;x\ne9\)

,\(B=\dfrac{7\left(3-\sqrt{x}\right)-12}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}=\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}\)

\(M=\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(M=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

 

 

 

24 tháng 9 2023

loading...

1 tháng 5 2021

a, ĐKXĐ : \(D=R\)

BPT \(\Leftrightarrow x^2+5x+4< 5\sqrt{x^2+5x+4+24}\)

Đặt \(x^2+5x+4=a\left(a\ge-\dfrac{9}{4}\right)\)

BPTTT : \(5\sqrt{a+24}>a\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a+24\ge0\\a< 0\end{matrix}\right.\\\left\{{}\begin{matrix}a\ge0\\25\left(a+24\right)>a^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\\left\{{}\begin{matrix}a^2-25a-600< 0\\a\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\0\le a< 40\end{matrix}\right.\)

\(\Leftrightarrow-24\le a< 40\)

- Thay lại a vào ta được : \(\left\{{}\begin{matrix}x^2+5x-36< 0\\x^2+5x+28\ge0\end{matrix}\right.\)

\(\Leftrightarrow-9< x< 4\)

Vậy ....

 

1 tháng 5 2021

b, ĐKXĐ : \(x>0\)

BĐT \(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< x+\dfrac{1}{4x}+1\)

- Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)

\(\Leftrightarrow a^2=x+\dfrac{1}{4x}+1\)

BPTTT : \(2a\le a^2\)

\(\Leftrightarrow\left[{}\begin{matrix}a\le0\\a\ge2\end{matrix}\right.\)

\(\Leftrightarrow a\ge2\)

\(\Leftrightarrow a^2\ge4\)

- Thay a vào lại BPT ta được : \(x+\dfrac{1}{4x}-3\ge0\)

\(\Leftrightarrow4x^2-12x+1\ge0\)

\(\Leftrightarrow x=(0;\dfrac{3-2\sqrt{2}}{2}]\cup[\dfrac{3+2\sqrt{2}}{2};+\infty)\)

Vậy ...

 

 

18 tháng 2 2021
18 tháng 2 2021
\(DKXD:-1\le x\le1\)

\(\Leftrightarrow x\left(\sqrt{1+x}+\sqrt{1-x}\right)+\dfrac{1}{2}\left(\sqrt{1-x}+\sqrt{1+x}\right)=x\)

\(\Leftrightarrow x\left(\sqrt{1+x}+\sqrt{1-x}\right)+\dfrac{1}{2}.\dfrac{1-x-1-x}{\sqrt{1-x}+\sqrt{1+x}}=x\)

\(\Leftrightarrow x\left(\sqrt{1+x}+\sqrt{1-x}\right)-\dfrac{x}{\sqrt{1-x}+\sqrt{1+x}}=x\)

\(x=0\) la nghiem cua pt

\(x\ne0\Rightarrow pt:\sqrt{1+x}+\sqrt{1-x}-\dfrac{1}{\sqrt{1-x}+\sqrt{1+x}}=1\)

\(u=\sqrt{1+x}+\sqrt{1-x}\Rightarrow pt:u-\dfrac{1}{u}=1\)

\(\Leftrightarrow u^2-u-1=0\Leftrightarrow\left[{}\begin{matrix}u=\dfrac{1+\sqrt{5}}{2}\\u=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}+\sqrt{1-x}=\dfrac{1+\sqrt{5}}{2}\\\sqrt{1+x}+\sqrt{1-x}=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)

\(\sqrt{1+x}+\sqrt{1-x}=\dfrac{1+\sqrt{5}}{2}\Leftrightarrow2+2\sqrt{1-x^2}=\dfrac{3+\sqrt{5}}{2}\)

\(\Leftrightarrow1-x^2=\left(\dfrac{\sqrt{5}-1}{4}\right)^2\Leftrightarrow x=\pm\sqrt{\dfrac{5+\sqrt{5}}{8}}\left(tm\right)\)

Nghiệm còn lại tự xét nhé :v

P/s: Ý tưởng thuộc về Ck iu  , em tag anh rồi nhé ck :v

Ơ mà này, dạo này chả thấy anh Lâm onl nhờ bà nhỉ? Bà biết ảnh bay đâu r ko? Muốn hỏi bài mà mãi chả thấy hiện hồn :v 

xài nhầm nick thông cảm :v

[Lớp 8]Bài 1. Giải phương trình sau đây:a) \(7x+1=21;\)b) \(\left(4x-10\right)\left(24+5x\right)=0;\)c) \(\left|x-2\right|=2x-3;\)d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\) Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\) Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\) Bài 4. Giải bài toán bằng cách lập phương...
Đọc tiếp

undefined

[Lớp 8]

Bài 1. Giải phương trình sau đây:

a) \(7x+1=21;\)

b) \(\left(4x-10\right)\left(24+5x\right)=0;\)

c) \(\left|x-2\right|=2x-3;\)

d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\)

 

Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:

                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\)

 

Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\)

 

Bài 4. Giải bài toán bằng cách lập phương trình:

Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện người đó giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. 

Tính quãng đường AB.

 

Bài 5. Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD⊥ AB (D ∈ AB), HE ⊥ AC (E∈ AC). AB=12cm, AC=16cm.

a) Chứng minh: ΔHAC đồng dạng với ΔABC;

b) Chứng minh AH2=AD.AB;

c) Chứng minh AD.AB=AE.AC;

d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}.\)

9
26 tháng 3 2021

Bài 4 :

24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ

Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0 

Suy ra quãng đường AB là 36x(km)

Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)

Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)

Ta có phương trình: 

\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)

Vậy quãng đường AB dài 36.2 = 72(km)

 

Bài 2: 

a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)

\(=5m^2-2m+9>0\forall m\)

Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m

6 tháng 4 2021

Bài 1:

ĐKXĐ \(2x\ne y\)

Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)

HPT trở thành

\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)

NV
16 tháng 4 2021

a.

\(\left(\dfrac{1}{3}\right)^x=27\Rightarrow x=log_{\dfrac{1}{3}}27=-3\)

b.

\(4^x=\dfrac{\sqrt{2}}{8}\Rightarrow x=log_4\left(\dfrac{\sqrt{2}}{8}\right)=-\dfrac{5}{4}\)

c.

\(\left(0.2\right)^x=10\Rightarrow x=log_{0,2}10=-log_510\)

1) Ta có: \(\left\{{}\begin{matrix}2x+y=5\\3x-2y=11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x+3y=15\\6x-4y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=-7\\2x+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x=5-y=5-\left(-1\right)=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

2) Ta có: \(B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\right):\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{x+3\sqrt{x}+2+2\sqrt{x}\left(\sqrt{x}-2\right)-5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{x-2\sqrt{x}+2x-4\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}+2}{1}\)

\(=\dfrac{3x-6\sqrt{x}}{\sqrt{x}-2}\)

\(=3\sqrt{x}\)