câu hỏi đề thi asmo
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Lấy ngẫu nhiên từ ngân hàng đề thi 4 câu hỏi để lập một đề thi
có C 20 4 = 4845 đề thi.
Thí sinh A rút ngẫu nhiên được 1 đề thi có 2 câu đã thuộc
có C 10 2 . C 10 2 = 2025 trường hợp.
Thí sinh A rút ngẫu nhiên được 1 đề thi có 3 câu đã thuộc
có C 10 3 . C 10 1 = 1200 trường hợp.
Thí sinh A rút ngẫu nhiên được 1 đề thi có 4 câu đã thuộc
có C 10 4 = 210 trường hợp.
Do đó, thí sinh A rút ngẫu nhiên được 1 đề thi có ít nhất 2 câu đã thuộc
có 2025 + 1200 + 210 = 3435 trường hợp.
Vậy xác suất để thí sinh A rút ngẫu nhiên được 1 đề thi có ít nhất 2 câu đã thuộc là
3435 4845 = 229 323
Đáp án A
Lấy ngẫu nhiên từ ngân hàng đề thi 4 câu hỏi để lập một đề thi có C 20 4 = 4845 đề thi.
Thí sinh A rút ngẫu nhiên được 1 đề thi có 2 câu đã thuộc
có C 10 2 . C 10 2 = 2025 trường hợp.
Thí sinh A rút ngẫu nhiên được 1 đề thi có 3 câu đã thuộc
có C 10 3 . C 10 1 = 1200 trường hợp.
Thí sinh A rút ngẫu nhiên được 1 đề thi có 4 câu đã thuộc
có C 10 4 = 210 trường hợp.
Do đó, thí sinh A rút ngẫu nhiên được 1 đề thi có ít nhất 2 câu đã thuộc
có 2025 + 1200 +210 =3435 trường hợp.
Vậy xác suất để thí sinh A rút ngẫu nhiên được 1 đề thi có ít nhất 2 câu đã thuộc là
3435 4845 = 229 323
Đáp án A
Số cách sắp xếp 50 câu cho một đề thi là 50!
Số cách chọn 20 câu nhận biết để xếp chúng vào đầu tiên là: 20!
Số cách chọn 10 câu thông hiểu để xếp chúng vào vị trí thứ hai là 10!
Số cách chọn 15 câu vận dụng để xếp chúng vào vị trí thứ ba là 15!
Số cách chọn 5 câu vận dụng cao xếp chúng vào vị trí cuối cùng là 5!
Xác suất cần tìm được tính bằng: P = 20 ! 10 ! 15 ! 5 ! 50 ! = 4 , 56 . 10 - 26
Chọn phương án A
Đáp án A
Số cách sắp xếp 50 câu cho một đề thi là 50!
Số cách chọn 20 câu nhận biết để xếp chúng vào đầu tiên là: 20!
Số cách chọn 10 câu thông hiểu để xếp chúng vào vị trí thứ hai là 10!
Số cách chọn 15 câu vận dụng để xếp chúng vào vị trí thứ ba là 15!
Số cách chọn 5 câu vận dụng cao xếp chúng vào vị trí cuối cùng là 5!
=> Xác suất cần tìm được tính bằng: P = 20 ! . 10 ! . 15 ! . 5 ! 50 ! = 4,56.10-26
=> Chọn phương án A.
Chọn A
Xảy ra hai trường hợp
TH1 : 2 câu lý thuyết, 1 câu bài tập có .
TH2 : 1 câu lý thuyết, 2 câu bài tập có .
Vậy có thể tạo 60 + 36 = 96A. 96 đề khác nhau.
Gọi 5 câu hỏi lần lượt là a, b, c, d, e
Chọn 3 trong 5 câu hỏi, ta có số đề khác nhau là :
abc, abd, abe, acd, ace, ade
bcd, bce, bde
cde
Vậy có 10 đề khác nhau
31 : 10 dư 1
Nên ít nhất có 1 trường hợp 4 học sinh cùng đề