K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

Phần 1 bạn chứng minh rồi nên mình không chứng minh lại nhé.

Ta có: \(\Delta BMC\:\)cân tại M

\(\Rightarrow BM=CM\)

\(\Rightarrow\stackrel\frown{BM}=\stackrel\frown{CM}\Rightarrow\widehat{BOM}=\widehat{MOC}\)

Lại có: \(\widehat{MOC}=\widehat{OMA}+\widehat{AMC}\)

\(\Rightarrow\widehat{MOC}>\widehat{AMC\:}\)

Hay \(\widehat{BMO}>\widehat{AMC}\)

24 tháng 10 2021

Xét (O) có 

\(\widehat{BAM}\) là góc nội tiếp chắn cung BM

\(\widehat{CAM}\) là góc nội tiếp chắn cung CM

Do đó: BM=CM

hay ΔBMC cân tại M

24 tháng 10 2021

chị ơi em chưa học lí thuyết chắn cung chị, phải giải chi tiết cơ @@

a: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó:ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó:ΔAEM=ΔAFM

Suy ra:ME=MF

hay ΔMEF cân tại M

c: Ta có: AE=AF

ME=MF

Do đó: AM là đường trung trực của FE

hay AM⊥FE

8 tháng 3 2022

a, Xét tam giác AMB và tam giác AMC có 

AM _ chung 

AB = AC

^MAB = ^MAC 

Vậy tam giác AMB = tam giác AMC (c.g.c) 

b, Xét tam giác AEM và tam giác AFM có 

AM _ chung 

^MAE = ^MAF 

Vậy tam giác AEM = tam giác AFM (ch-gn) 

=> AE = AF ( 2 cạnh tương ứng ) 

=> EM = FM ( 2 cạnh tương ứng ) 

Xét tam giác MEF có EM = FM 

Vậy tam giác MEF cân tại M

c, AE/AB = AF/AC => EF // BC 

mà tam giác ABC cân tại A có AM là phân giác 

đồng thời là đường cao 

=> AM vuông BC 

=> AM vuông EF 

8 tháng 3 2022

bạn vẽ hình cho mình xem với 

14 tháng 5 2016

a) Vì tam giác ABC là tam giác cân nên tia phân giác của góc B cũng là đường cao của tam giác ABC => góc BMC = góc BMA

Xét tam giác BMA và tam giác BMC, ta có:

Góc BMA = góc BMC ( cmt )

AB = CB ( gt )

Góc ABM = Góc CBM ( gt )

Vậy tam giác BMA = tam giác BMC ( cạnh huyền góc nhọn )

b) Theo câu a đã chứng minh, tia phân giác của góc B cũng là đường cao của tam giác ABC. Vậy góc BMC = góc BMA

c) Câu này chắc AB = 8cm mà bạn ghi nhầm AC = 8cm

Áp dụng đính lý Pi - ta - go vào tam giác ABM, ta có:

AM2 + BM2 = AB2

52 + BM2 = 82

BM2 = 82 - 52

BM2 = 39

BM gần = 6

14 tháng 5 2016

a) Do tam giác ABC cân tại B và BM là đường phân giác của góc B nên

BM là đường cao,đường trung tuyến,và đường trung trực của,đường cao của tam giác ABC(tính chất tam giác cân)

Xét tam giác BMA và tam giác BMC có

BA=BC(vì tam giác ABC cân tại B)

Góc BMA=góc BMC=90 độ(vì BM là đường cao của tam giác ABC)

Cạnh chung BM

Suy ra tam giác BMA= tam giác BMC(cạnh huyền-cạnh góc vuông)

b) Vì BM là đường cao của tam giác ABC nên

Góc BMA=BMC=90 độ

c) Do BM là đường trung trực của tam giác ABC nên(cmt ở câu a)

Nên AM=CM=8:2=4 CM

Áp dụng định lí Py-ta-go vào tam giác vuông ABM có

AB^2=AM^2+BM^2

Hay 5^2+BM^2=8^2

25+BM^2=64

BM^2=64-25=39

BM= căn bậc hai của 39=xấp xỉ 6

Vậy BM=~6

a: góc B=90-30=60 độ

b: Xét ΔBAM vuông tại A và ΔBHM vuông tại H có

BM chung

góc ABM=góc HBM

=>ΔBAM=ΔBHM

c: Xét ΔBAH có BA=BH và góc ABH=60 độ

nên ΔABH đều

d: Xét ΔMBC có góc MBC=góc MCB=30 độ

nên ΔMBC cân tại M

e: BA=BH

MA=MH

=>BM là trung trực của AH