K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

\(\left(x^2-1\right)^2-3^2-6\left(x^2-4\right)^2=0\)

\(\Leftrightarrow\left(x^2-1-3\right)\left(x^2-1+3\right)-6\left(x^2-4\right)^2=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2\right)-6\left(x^2-4\right)^2=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2-6x^2+24\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(-5x^2+26\right)=0\)

\(\Leftrightarrow x=2\)(vì x nguyên x>0)

2 tháng 3 2023

\(x^2y^2-x^2-3y^2-2x-1=0\)

\(\Leftrightarrow y^2\left(x^2-3\right)-\left(x+1\right)^2=0\)

\(\Leftrightarrow y^2\left(x^2-3\right)=\left(x+1\right)^2\left(1\right)\)

Vì y2 và (x+1)2 đều là các số chính phương, do đó x2-3 cũng phải là số chính phương.

Đặt \(x^2-3=a^2\) (a là số tự nhiên).

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=3\)

Ta có x+a>x-a. Lập bảng:

x+a3-1
x-a1-3
x2-2

Với \(x=2\) . \(\left(1\right)\Rightarrow y^2=9\Leftrightarrow y=\pm3\)

Với \(x=-2\)\(\left(1\right)\Rightarrow y^2=1\Leftrightarrow y=\pm1\)

Vậy các số nguyên \(\left(x;y\right)=\left(2;3\right),\left(2;-3\right),\left(-2;1\right),\left(-2;-1\right)\)

 

12 tháng 11 2021

Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.

Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.

Bước 3. Đối chiếu với điều kiện và kết luận bài toán.

xem tr sách của anh

12 tháng 11 2021

Bài 1:

PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(m+2\right)^2-4\cdot2\ge0\Leftrightarrow m^2+4m-8\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-2-2\sqrt{3}\\m\ge-2+2\sqrt{3}\end{matrix}\right.\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2\end{matrix}\right.\)

Ta có \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{9}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=9x_1x_2\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=18\\ \Leftrightarrow2\left(m+2\right)^2-8=18\\ \Leftrightarrow2m^2+8m+8-8=18\\ \Leftrightarrow m^2+4m-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{13}\\m=-2-\sqrt{13}\end{matrix}\right.\left(tm\right)\)

16 tháng 2 2022

bạn đăng tách ra cho mn giúp nhé 

a, Để pt có 2 nghiệm pb 

\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

\(x_1-3x_2=0\)(3) 

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)

Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)

16 tháng 2 2022

\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)

\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)

\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)

\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)

\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)

1 tháng 6 2023

\(x^2-2\left(m-1\right)x+m^2-4=0\)

\(\Delta=b^2-4ac=\left[-2\left(m-1\right)\right]^2-4\left(m^2-4\right)\)

\(=4\left(m^2-2m+1\right)-4\left(m^2-4\right)\)

\(=4m^2-8m+4-4m^2+16\)

\(=-8m+20\)

Để pt đã cho có 2 nghiệm pb \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow-8m+20>0\Leftrightarrow-8m>-20\Leftrightarrow m< \dfrac{5}{2}\)

Theo Vi-ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m^2-4\end{matrix}\right.\)

Ta có : \(x_1\left(x_1-3\right)+x_2\left(x_2-3\right)=6\)

\(\Leftrightarrow x_1^2-3x_1+x^2_2-3x_2=6\)

\(\Leftrightarrow\left(x_1^2+x_2^2\right)-3\left(x_1+x_1\right)-6=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)-6=0\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-4\right)-3\left(2m-2\right)-6=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+8-6m+6-6=0\)

\(\Leftrightarrow2m^2-14m+12=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=6\left(ktm\right)\\m=1\left(tm\right)\end{matrix}\right.\)

Vậy m = 1 thì thỏa mãn đề bài.

 

Số nguyên lớn nhất thỏa mãn bất phương trình (x – 2)2 – x2 – 8x + 3 ≥ 0 là  A. x = -1          B. x = 0           C. x = 1           D. x = 2  Câu 41Tập nghiệm của phương trình x + 1 = 5 là  A. 4 B. 4 ; - 6. C. -4 ; 6. D.  -6 Câu 42Số đo mỗi góc của lục giác đều là :  A. 1500. B. 1080. C. 1000. D. 1200. Câu 43 Phương trình nào sau đây...
Đọc tiếp

Số nguyên lớn nhất thỏa mãn bất phương trình (x – 2)2 – x2 – 8x + 3 ≥ 0 là

 

 

A. x = -1         

 

B. x = 0          

 

C. x = 1          

 

D. x = 2 

 

Câu 41

Tập nghiệm của phương trình x + 1 = 5 là

 

 

A. 4

 

B. 4 ; - 6.

 

C. -4 ; 6.

 

D.  -6

 

Câu 42

Số đo mỗi góc của lục giác đều là :

 

 

A. 1500.

 

B. 1080.

 

C. 1000.

 

D. 1200.

 

Câu 43

 Phương trình nào sau đây là phương trình bậc nhất một ẩn ?

 

 

A. 0x +  25  = 0.

 

B. x + y = 0.           

 

C.           

 

D. 5x + = 0.

 

Câu 44

Tam giác ABC, có A B = 6 cm, AC =  8cm, BC = 10 cm, đường phân giác AD thì số đo độ dài đoạn BD và CD thứ tự bằng :

 

 

A. 3 ; 7.

 

B. 4 ; 6.

 

C. .

 

D. .

 

Câu 45

Trong các khẳng định sau, khẳng định nào không đúng

 

 

A. Hình hộp chữ nhật là hình lăng trụ đứng.

 

B. Các cạnh bên của hình lăng trụ đứng bằng nhau.

 

C. Hình lăng trụ đứng có đáy là hình bình hành là hình hộp chữ nhật.

 

D. Các mặt bên của hình lăng trụ đứng là hình chữ nhật.

 

Câu 46

Hãy chọn câu đúng.

 

 

A. Phương trình x = 0 và x(x + 1) là hai phương trình tương đương

 

B. kx + 5 = 0 là phương trình bậc nhất một ẩn số

 

C. Trong một phương trình ta có thể chuyển một hạng tử vế này sang vế kia đồng thời đổi dấu của hạng tử đó

 

D. Phương trình x = 2 và |x| = 2 là hai phương trình tương đương

 

Câu 47

Tam giác ABC, có A B = 3 cm, AC =  4cm, đường phân giác AD thì tỉ số hai đoạn BD và CD bằng :

 

 

A. 6.

 

B. 12.

 

C. .

 

D. .

 

Câu 48

 Một hình chữ nhật có chu vi 20 m, nếu tăng chiều dài 2 m và tăng chiều rộng 1 m thì diện tích tăng 16 m2. Chiều dài của hình chữ nhật là:

 

 

A. 8 m.

 

B. 12 m         

 

C. 6 m           

 

D. 4 m         

 

Câu 49

 Số nghiệm của phương trình |2x – 3| - |3x + 2| = 0 là

 

 

A. 3

 

B. 2                

 

C. 0                

 

D. 1                

 

Câu 50

Hình lập phương có diện tích toàn phần bằng 54cm2. Thì thể tích bằng?

 

 

A. 9 cm3.

 

B. 25 cm3.

 

C. 27 cm3.

 

D. 54 cm3.

1
21 tháng 7 2021

(x-2)^2 - x^2 - 8x+3 >= 0

x^2-4x+4 - x^2-8x +3 >=0

7>=12x

x<=12/7

x nguyên lớn nhất là 1

1 tháng 4 2023

\(x^2+2\left(m+1\right)+4m-4=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\left(m+1\right)\\x_1x_2=\dfrac{c}{a}=4m-4\end{matrix}\right.\)

Ta có :

\(x_1^2+x_2^2+3x_1x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)

\(\Leftrightarrow\left[-2\left(m+1\right)\right]^2+\left(4m-4\right)=0\)

\(\Leftrightarrow4\left(m^2+2m+1\right)+4m-4=0\)

\(\Leftrightarrow4m^2+8m+4+4m-4=0\)

\(\Leftrightarrow4m^2+12m=0\)

\(\Leftrightarrow4m\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-3\end{matrix}\right.\)

12 tháng 1 2021

\(x^2-2x+y^2+4y-4< 0\)

⇔ \(\left(x-1\right)^2+\left(y+2\right)^2< 9\)

Mà \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\) và 2 số này đều là bình phương của một số nguyên

Nên ta có các trường hơpj

TH1 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\) (TM)

TH2 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=1\\\left(y+2\right)^2=1\end{matrix}\right.\) .....

TH3 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=4\\\left(y+2\right)^2=1\end{matrix}\right.\) .....

Thôi tự túc mấy trường hợp còn lại. Nghi đề sai lắm :((

 

12 tháng 1 2021

xin lỗi đề mình đánh sai phải là -4y+4