cho a thuộc n chứng tỏ (n+100)(n+999) chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2
Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2
Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2
Bài 4 bạn ghi thiếu đề
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2:
a)Ta có : \(n+3=\left(n-9\right)+12\)
\(\Rightarrow n+3⋮n-9\Leftrightarrow12⋮n-9\) ( vì n - 9 chia hết cho n - 9 )
\(\Leftrightarrow n-9\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Mà : \(n\in N\) nên \(n-9=\pm1;\pm2;\pm3;\pm4;\pm6;12\)
Ta có bảng :
n - 9 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
n | 3 | 5 | 6 | 7 | 8 | 10 | 11 | 12 | 13 | 15 | 21 |
Vậy \(n=3;5;6;7;8;10;11;12;13;15;21\)
b) Bạn làm tương tự câu a
Đặt a/b=c/d = t
=> a =bt; c=dt
Thay vào VT ta có :
$\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7.b^2t^2+3bt.b}{11b^2t^2-8b^2}==\frac{b^2t\left(7t-3\right)}{b^2\left(11t^2-8\right)}=\frac{t\left(7t-3\right)}{11t^2-8}$7a2+3ab11a2−8b2 =7.b2t2+3bt.b11b2t2−8b2 ==b2t(7t−3)b2(11t2−8) =t(7t−3)11t2−8
Tương tựu thay vào VP
olm duyệt đi
\(a\)là số tự nhiên nên \(a\)là số chẵn hoặc \(a\)là số lẻ.
- Nếu \(a\)là số chẵn khi đó \(a+100\)là số chẵn nên \(\left(a+100\right)\left(a+999\right)⋮2\).
- Nếu \(a\)là số lẻ khi đó \(a+999\)là số chẵn nên \(\left(a+100\right)\left(a+999\right)⋮2\)
Do đó ta có đpcm.