BỎ NGOẶC RỒI TÍNH:
1+(-2)+3+(-4)+...........+2019+(-2020)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ -2020 + (1543 + 2020)
\(=-2020+1543+2020\)
\(=-2020+2020+1543\)
\(=0+1543\)
\(=1543\)
2/ (245 – 97) – 245
\(=245-97-245\)
\(=245-245-97\)
\(=0-97\)
\(=-97\)
3/ (-145) – (118 – 145)
\(=-145-118+145\)
\(=-145+145-118\)
\(=0-118\)
\(=-118\)
4/ (-36 + 89) - (145 + 89 – 36)
\(=-36+89-145-89+36\)
\(=\left(-36+36\right)+\left(89-89\right)-145\)
\(=0+0-145\)
\(=-145\)
học tốt
\(1,\left[\left(-\dfrac{2}{5}\right)+\dfrac{1}{3}\right]-\left(\dfrac{3}{5}-\dfrac{1}{3}\right)=-\dfrac{2}{5}+\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{1}{3}\\ =\left(-\dfrac{2}{5}-\dfrac{3}{5}\right)+\left(\dfrac{1}{3}+\dfrac{1}{3}\right)\\ =\dfrac{-2-3}{5}+\dfrac{1+1}{3}\\ =-\dfrac{5}{5}+\dfrac{2}{3}\\ =-1+\dfrac{2}{3}\\ =\dfrac{-3+2}{3}=-\dfrac{1}{3}\\ b,\left(\dfrac{3}{2}-\dfrac{3}{4}\right)-\left(0,25+\dfrac{1}{2}\right)\\ =\left(\dfrac{3}{2}-\dfrac{3}{4}\right)-\left(\dfrac{1}{4}+\dfrac{1}{2}\right)\\ =\dfrac{3}{2}-\dfrac{3}{4}-\dfrac{1}{4}-\dfrac{1}{2}\\ =\left(\dfrac{3}{2}-\dfrac{1}{2}\right)+\left(-\dfrac{3}{4}-\dfrac{1}{4}\right)\\ =\dfrac{3-1}{2}+\dfrac{-3-1}{4}\\ =\dfrac{2}{2}-\dfrac{4}{4}=1-1=0\)
1: =-2/5+1/3-3/5+1/3
=-1+2/3=-1/3
2: =3/2-3/4-1/4-1/2
=1-1=0
Mình đã trả lời tại link này: https://olm.vn/hoi-dap/question/180855.html?pos=3148734. Bạn tham khảo nha
Ta có :
B = \(\dfrac{1}{2020}+\dfrac{2}{2019}+\dfrac{3}{2018}+...+\dfrac{2019}{2}+\dfrac{2020}{1}\)
B = \(\left(\dfrac{1}{2020}+1\right)+\left(\dfrac{2}{2019}+1\right)+\left(\dfrac{3}{2018}+1\right)+...+\left(\dfrac{2019}{2}+1\right)+1\)
B = \(\dfrac{2021}{2020}+\dfrac{2021}{2019}+\dfrac{2021}{2018}+...+\dfrac{2021}{2}+1\)
B = \(2021\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+...+\dfrac{1}{2}\right)\) (1)
Mà A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{A}{B}=\dfrac{1}{2021}\)
Ta có: \(B=\dfrac{1}{2020}+\dfrac{2}{2019}+\dfrac{3}{2018}+...+\dfrac{2019}{2}+\dfrac{2020}{1}\)
\(=\left(\dfrac{1}{2020}+1\right)+\left(\dfrac{2}{2019}+1\right)+\left(\dfrac{3}{2018}+1\right)+...+\left(\dfrac{2019}{2}+1\right)+1\)
\(=\dfrac{2021}{2020}+\dfrac{2021}{2019}+\dfrac{2021}{2018}+...+\dfrac{2021}{2}+\dfrac{2021}{2021}\)
Suy ra: \(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}}{2021\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)}=\dfrac{1}{2021}\)
số lượng số hạng của dãy số là
( 2021 - 2 ) : 1 + 1 = 2020
tổng của dãy số là
( 2021 + 2) x 2020 : 2 = 2043230
vậy A = \(\frac{1}{2043230}\)
a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)
=1-2/4=1/2
b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)
\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)
c: x-y=0 nên x=y
\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)
=2019
(1+(-2)) +(3+(-4))+.........+(2019+(-2020)) (1010 nhóm ngoặc)
=(-1)+(-1)+..........+(-1) (1010 số (-1))
=(-1).1010
=-1010