CMR nếu số tự nhiên abc chia hết cho 37 thì bca và cab cũng chia hết cho 37
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a
Ta có
1990a = 199000 + a = 198986 +(14 +a) chia hết cho 37
=> 14+ a chia hết cho 37
+14+a =37 => a =23
+14+a =74 => a =60
+14+a =111 => a =97
Vậy số cần tìm là : 23;60;97
Tìm một số tự nhiên có 2 chữ số , sao cho nếu viết nó tiếp sau số 1999 thì ta được một số chia hết cho 37.
Nếu đề như thế thì đáp án là 11;48;85
Tick nhé
Gọi số phải tìm là abcdeghik
Ta có ab chia hết cho 2, để nhỏ nhất ta chọn ab = 12
Ta có 12c chia hết cho 3, để nhỏ nhất ta chọn c = 0
Ta có 120d chia hết cho 4, để nhỏ nhất ta chọn d = 0
Ta có 1200e chia hết cho 5, để nhỏ nhất ta chọn e = 0
Ta có 12000g chia hết cho 6, để nhỏ nhất ta chọn g = 0
Ta có 120000h chia hết cho 7 nên h = 3
Ta có 1200003i chia hết cho 8 nên i = 2
Ta có 12000032k chia hết cho 9 nên k = 1
Vậy, số đó là 120000321
Ta có:5a+3b và 13a+8b chia hết cho 2012
=>2(13a+8b)-5(5a+3b) chia hết cho 2012
=>26a+16b-25a-15b chia hết cho 2012
=>a+b chia hết cho 2012
=>8a+8b chia hết cho 2012
=>(13a+8b)-(8a+8b) chia hết cho 2012
=>5a chia hết cho 2012
Mà (5,2012)=1
=>a chia hết cho 2012
Mặt khác a+b chia hết cho 2012
=>b chia hết cho 2012
Vậy a và b chia hết cho 2012(đpcm)
5a +3b chia hết cho 2012=>8 ."5a +3b"chia hết cho 2012 =>40a +24b chia hết cho 2012
13a +8b chia hết cho 2012=>3 "13a+8b" chia hết cho 2012=>39a+24b chia hết cho 2012
=>40a +24b- "39a+24b" chia hết cho 2012+> a chia hết cho 2012
5a +3b chia hết cho 2012=>13"5a+3b' chia hết cho 2012 =>65a+39b chia hết cho 2012
13a+8b chia hết cho 2012 =>5"13a+8b"chia hết cho 2012=>65a+40b chia hết cho 2012
=> 65a +40b - "65a+39b"chia hết cho 2012=>b chia hết cho 2012
Vậy .....
abcdeg = 1000.abc + deg = (abc + deg) + 999.abc
Vì abc + deg chia hết cho 37
999.abc chia hết cho 37
=> abcdeg chia hết cho 37
Ta có: \(\overline{abc}⋮37\Leftrightarrow100a+10b+c⋮37\)(1)
+) (1) => \(10\left(100a+10b+c\right)⋮37\)
<=> \(100b+10c+a+999a⋮37\) mà \(999a=37.27a⋮37\)
=> \(100b+10c+a⋮37\Leftrightarrow\overline{bca}⋮37\)
+) (1) => \(100\left(100a+10b+c\right)⋮37\)
<=> \(\left(100c+10a+b\right)+999\left(10a+b\right)⋮37\)mà \(999\left(10a+b\right)=37.27\left(10a+b\right)⋮37\)
=> \(\overline{cab}=100c+10a+b⋮37\)