K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

\( A = \sqrt {\dfrac{{8 + \sqrt {15} }}{2}} + \sqrt {\dfrac{{8 - \sqrt {15} }}{2}} \\ \Rightarrow {A^2} = \dfrac{{8 + \sqrt {15} }}{2} + 2\sqrt {\dfrac{{8 + \sqrt {15} }}{2}.\dfrac{{8 - \sqrt {15} }}{2}} + \dfrac{{8 - \sqrt {15} }}{2}\\ = 8 + 2\sqrt {\dfrac{{\left( {8 + \sqrt {15} } \right)\left( {8 - \sqrt {15} } \right)}}{4}} = 8 + 7 = 15 \Rightarrow A = \sqrt {15} \)

20 tháng 3 2020

Ta có: \(A^2=\frac{8+\sqrt{15}}{2}+\frac{8-\sqrt{15}}{2}+2\sqrt{\frac{8+\sqrt{15}}{2}.\frac{8-\sqrt{15}}{2}}\)

\(A^2=8+2\sqrt{\frac{64-15}{4}}\)

\(A^2=8+2\sqrt{\frac{49}{4}}\)

\(A^2=8+7=15\)

Mà A > 0 nên \(A=\sqrt{15}\)

\(\frac{\sqrt{8-\sqrt{15}}}{\sqrt{30}-\sqrt{2}}=\frac{\sqrt{2}\sqrt{8-\sqrt{15}}}{\sqrt{2}\left(\sqrt{15}.\sqrt{2}-\sqrt{2}\right)}=\frac{\sqrt{16-2\sqrt{15}}}{\sqrt{2}.\sqrt{2}\left(\sqrt{15}-1\right)}\)

\(=\frac{\sqrt{15-2\sqrt{15}+1}}{2\left(\sqrt{15}-1\right)}=\frac{\sqrt{\left(\sqrt{15}-1\right)^2}}{2\left(\sqrt{15}-1\right)}=\frac{\sqrt{15}-1}{2\left(\sqrt{15}-1\right)}=\frac{1}{2}\)

21 tháng 5 2019

A=\(\sqrt{5-2\sqrt{3}.\sqrt{5}+3}-\sqrt{5+2\sqrt{5}.\sqrt{3}+3}\)

A=\(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)

A=\(\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)

A=\(-2\sqrt{3}\)

22 tháng 8 2020

\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)

\(A=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)

\(A=\left|\sqrt{5}-\sqrt{3}\right|-\sqrt{5}-\sqrt{3}\)

\(A=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)

\(A=-2\sqrt{3}\)

25 tháng 8 2015

\(D=\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\)

\(\Rightarrow D^2=\frac{8+\sqrt{15}}{2}+\frac{8-\sqrt{15}}{2}+2.\sqrt{\frac{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}{2.2}}\)

\(=8+2.\sqrt{\frac{64-15}{4}}\)

\(=8+2.\frac{7}{2}=8+7=15\)

\(\Rightarrow D=\sqrt{15}\text{ Hoặc }D=-\sqrt{15}\)

\(\text{Mà }D>0\text{ nên }D=\sqrt{15}\)

7 tháng 8 2018

D=√8+√152 +√8−√152 

⇒D2=8+√152 +8−√152 +2.√(8+√15)(8−√15)2.2 

=8+2.√64−154 

=8+2.72 =8+7=15

⇒D=√15 Hoặc D=−√15

Mà D>0 nên D=√15

20 tháng 6 2018

\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)

\(=\sqrt{3-2\sqrt{3.5}+5}-\sqrt{3+2\sqrt{3.5}+5}\)

\(=\sqrt{\left(3-5\right)^2}-\sqrt{\left(3+5\right)^2}\)

\(=|3-5|-|3+5|\)

\(=-3+5-3-5\)

\(=-6 \)

28 tháng 5 2021

a) (a+1)(ba+1)(a+1)(ba+1).
b) (xy)(x+y)(x−y)(x+y).

19 tháng 6 2021

\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{2-1}=2\sqrt{2}-2+2-\sqrt{2}=\sqrt{2}\)

\(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\)

\(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)

\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\left(a-\sqrt{a}\right)\left(1+\sqrt{a}\right)}{1-a}=\dfrac{a+a\sqrt{a}-\sqrt{a}-a}{1-a}=\dfrac{\sqrt{a}\left(a-1\right)}{1-a}=-\sqrt{a}\)

\(\dfrac{p-2\sqrt{p}}{\sqrt{p}-2}=\dfrac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)

27 tháng 8 2020

1)  \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)

              \(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0

=> A=3

28 tháng 8 2020

2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)

 \(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

​​\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)

       \(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)

Mà A >0 

=> A=2

Mà 4>3

=> \(\sqrt{4}=2>\sqrt{3}\)

=> \(A>\sqrt{3}\)