(a+b)(a^4+b^4)>=(a^2+b^2)(a^3+b^3)
zạn nào giúp mình bài toán bày vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không cần giỏi cũng giải được mà. cứ giải đi không cần biết đúng hay sai là được
THẾ LÀ GIỎI RÙI
nhưng mình nghĩ mãi không ra nếu bạn nói được như vậy thì thử giải giúp mình xem
a)\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}+c^2-c+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\)
Xảy ra khi \(a=b=c=\frac{1}{2}\)
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1+1\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)
\(\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}=\frac{\frac{\left(a+b\right)^2}{4}}{2}>\frac{\frac{1}{4}}{2}=\frac{1}{8}\)
c)\(BDT\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\)
Khi a=b
1) a2 +b2 +c2>= ab +bc +ca <=> 2a2 +2b2 +2c2 >=2ab +2bc +2ca <=> 2a2 +2b2 +2c2 -2ab -2bc -2ca >= 0
<=> (a -b)2 +(b -c)2 + (c -a)2 >= 0 (bđt đúng với mọi a, b, c)
2) Áp dụng bđt Cauchy với a, b, c > 0 ta có :
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc.ab}{ac}}=2b\)
tương tự : \(\frac{ab}{c}+\frac{ca}{b}\ge2a\); \(\frac{ca}{b}+\frac{bc}{a}\ge2c\)
Cộng từng vế 3 bđt trên suy ra đpcm
3) Từ gt a a +b =c => a +b -c =0 => (a +b -c)2 = 0 => a2 +b2 +c2 +2ab -2bc -2ca = 0
=> a2 +b2 +c2 = 2bc + 2ca -2ab => (a2 +b2 +c2)2 = (2bc +2ca -2ab)2
=> a4 +b4 +c4 +2a2b2 +2b2c2 +2c2a2 = 4b2c2 +4c2a2 +4a2b2 +4abc2-4a2bc - 4ab2c
=> a4 +b4 +c4 -2a2b2 -2b2c2 -2c2a2 = 4abc(c -a -b) = 4abc.0 =0
Vậy a4 +b4 +c4 = 2a2b2 +2b2c2 +2c2a2
Mọi người giúp mình bài nay với. Mai mình nộp bài mà mình lại học toán hơi kém tí. Thanhks trước.
Bài 1: cho a, b, c thuộc R.
Chứng minh a2 + b2 + c2 >= ab+ac+bc
Bài 2:cho a, b, c >0.
Chứng minh (bc/a)+(ac/b)+(ab/c)>= a+b+c
Bài 3: cho a, b, c thoả mãn a+b=c.
Chứng minh a4 +b4 +c4 =2a2b2 +2b2c2 + 2a2c2
Bài 2:
\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)
\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)
\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)
\(\dfrac{2}{67}-\left(\dfrac{3}{7}+\dfrac{2}{67}\right)\\ =\dfrac{2}{67}-\dfrac{215}{469}\\ =\dfrac{-3}{7}\)