K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

a) Xét ∆ABC vuông tại B có:

^BAC + ^C = 90°

Hay ^BAC + 30° = 90°

=> ^BAC = 60° 

Vì AD là phân giác của góc BAC.

=> ^DAC = 60°/2 = 30°

Xét tam giác ADC có:

^DAC + ^ACD + ^ADC = 180°

Hay 30° + 30° + ^ADC = 180°

=> ^ADC = 180° - 30° - 30°

=> ^ADC = 120°

b) Xét tam giác ABD và tam giác AED có:

AB = AE ( gt )

^BAD = ^EAD ( Do AD phân giác )

Cạnh AD chung.

=> ∆ABD = ∆AED ( c.g.c )

c) Vì ∆ABD = ∆AED ( cmt )

=> ^ABD = ^AED = 90°

=> DE vuông góc với AC tại E                (1)

Ta có: ^DAC = ^DCA = 30°

=> ∆DAC cân tại D.

=> AD = DC

Xét tam giác DEA và tam giác DEC có:

Góc vuông: ^DEA = ^DEC ( = 90° )

Cạnh huyền AD = DC ( cmt )

Góc nhọn: ^DAC = ^DCA ( cmt )

=> ∆DEA = ∆DEC ( g.c.g )

=> AE = EC 

=> E là trung điểm của AC.                       (2)

Từ (1) và (2) => DE là trung trực của AC ( đpcm )

17 tháng 9 2023

a) Ta có: \(\widehat {BAD} = \widehat {CAD}\)(vì AD là phân giác của góc BAC).

Mà \(\widehat B > \widehat C\)nên \(\widehat B + \widehat {BAD} > \widehat C + \widehat {CAD}\).

Tổng ba góc trong một tam giác bằng 180° nên:

\(\begin{array}{l}\widehat B + \widehat {BAD} > \widehat C + \widehat {CAD}\\ \to 180^\circ  - (\widehat B + \widehat {BAD}) < 180^\circ  - (\widehat C + \widehat {CAD})\\ \to \widehat {ADB} < \widehat {ADC}\end{array}\)

b) Xét hai tam giác ADB và tam giác ADE có:

     \(\widehat {ADB} = \widehat {ADE}\);

     AD chung;

     \(\widehat {BAD} = \widehat {EAD}\).

Vậy \(\Delta ABD = \Delta AED\) (g.c.g)

Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn.

Trong tam giác ABC có \(\widehat B > \widehat C\) nên AC > AB hay AB < AC (AB là cạnh đối diện với góc C, AC là cạnh đối diện với góc B).

4 tháng 1 2022

lóa mắt quá

4 tháng 1 2022

để mình đăng lại sorry

 

4 tháng 1 2020

E D A C B F I

a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )

=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)

=> BE = DC 

b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC

=> ^EDI = ^DIC  mà ^EDI = ^BDI  ( DI là phân giác ^BDE ) 

=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.

c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID  = 2. ^BID  = 2. ^CIF( theo b) (1)

Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF  (2)

Lại có: ^CFD  là góc ngoài của \(\Delta\)FCI  => ^CFD = ^CIF + ^ICF  (3)

Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED  (  ^CED = ^BCA  vì ED //BC )

24 tháng 2 2022

098765432rtyuiorewerio65yuy5t

yyyyyyyyyyyyyyyyyyyyyyy

1 tháng 5 2017

9/4/2004 BMT

1 tháng 5 2017

9/4/2004 BMT là sao vậy?

a) Xét ΔBAD vuông tại A và ΔBHD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔBAD=ΔBHD(cạnh huyền-góc nhọn)

Suy ra: BA=BH(Hai cạnh tương ứng)

15 tháng 1 2017

A B C H I E D

ta có \(\widehat{ABH}+\widehat{HAB}=90^o\)( tam giác HAB vuông tại H )

và \(\widehat{HAB}+\widehat{HAC}=90^o\left(gt\right)\)

suy ra \(\widehat{ABH}=\widehat{HAC}\)( vì cùng phụ với HAB )

b)    xét \(\Delta IAH \)và \(\Delta ICE\)

IA = IC (gt)

IH =IE (gt)

góc HIA = góc EIC ( đối đỉnh )

do đó \(\Delta IAH=\Delta ICE\left(c.g.c\right)\)

suy ra AH = EC ( 2 cạnh tương ứng )

và \(\widehat{HAI}=\widehat{ECA}\)(2 góc tương ứng )

xét \(\Delta HAC\)và \(\Delta ECA\)

AH = EC (cmt)

góc HAI = góc ECA (cmt)

AC là cạnh chung

do đó \(\Delta HAC=\Delta ECA\left(c.g.c\right)\)

suy ra \(\widehat{AHC}=\widehat{CEA}\)(2 góc tương ứng)

mà \(\widehat{AHC}=90^o\Rightarrow\widehat{CEA}=90^o\)

hay \(CE⊥AE\)

 Bài 1:Cho tam giác ABC có  và BC=6cma)Trên nửa mặt phẳng bờ là đường thẳng BC có chứa A vẽ tia Bx  BC.Giải thích vì sao BA là tia phân giác của góc xBCb)Đường thẳng trung trực a của đoạn thẳng BC cắt các đường thẳng AB và AC tại E và F.Tính số đo của góc AEFc)Qua C vẽ đường thẳng song song với AB,đường thẳng này cắt đường thẳng a tại N.Tính số đo góc ACNd)So sánh 2 góc ENC và xBABài 2:Cho...
Đọc tiếp

 Bài 1:Cho tam giác ABC có [​IMG] và BC=6cm
a)Trên nửa mặt phẳng bờ là đường thẳng BC có chứa A vẽ tia Bx [​IMG] BC.Giải thích vì sao BA là tia phân giác của góc xBC
b)Đường thẳng trung trực a của đoạn thẳng BC cắt các đường thẳng AB và AC tại E và F.Tính số đo của góc AEF
c)Qua C vẽ đường thẳng song song với AB,đường thẳng này cắt đường thẳng a tại N.Tính số đo góc ACN
d)So sánh 2 góc ENC và xBA
Bài 2:Cho tam giác ABC có [​IMG] 
a)Tia phân giác của góc ABc cắt AC tại D.Qua A vẽ đường thẳng song song với BD,đường thẳng này cắt đường thẳng BC tại E.So sánh 2 góc BEA và BAE
b)Qua A vẽ đường thẳng xy song song BC.Tính số đo góc BAI
Bài 3:Cho tam giác ABC có [​IMG] 
a)Hai tia phân giác của góc ABC và góc ACB cắt nhau tại I.Qua I vẽ đường thẳng song song với BC,đường thẳng này cắt các đường thẳng AB và AC tại D và E.Tính số đo góc ACI và góc CIE
b)So sánh 2 góc DIB và ABI
c)Qua A kẻ AH [​IMG] tại H,qua C kẻ CK [​IMG] tại K.Giải thích vì sao AH//CK
d)Tính số đo góc CAH
Bài 8:Cho tam giác ABC có BC=8cm và [​IMG] 
a)Qua A vẽ đường thẳng xy song song với BC(tia Ax thuộc nửa mặt phẳng bờ là đường thẳng AC có chứa điểm B).Tính số đo góc yAB và BAC
b)Vẽ AH [​IMG] tại H.Tính số đo các góc BAH và CAH
Bài 9:Cho tam giác ABC có BC=6cm, [​IMG] 
a)Qua B kẻ [​IMG] tại D và [​IMG] tại E,2 đường thẳng BD và CE cắt nhau tại H.Qua B và C lần lượt vẽ các đường thẳng vuông góc với AB và AC,2 đường thẳng này cắt nhau tại K.Vì sao CK//BD và BK//CE?
b)Tính số đo góc DBC
c)TÍnh số đo các góc HCB và EHD

0