Cho a,b,c > 0 và abc = 1
Chứng minh rằng : \(\Sigma\frac{1}{2a^3+b^3+c^3+2}\le\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://www.google.com/search?q=cho+abc%3D1.+cm+1%2F2a%5E3%2Bb%5E3%2Bc%5E3%2B2%3C1%2F2&rlz=1C1NHXL_viVN846VN846&oq=cho+abc%3D1.+cm+1%2F2a%5E3%2Bb%5E3%2Bc%5E3%2B2%3C1%2F2&aqs=chrome..69i57.4867j0j7&sourceid=chrome&ie=UTF-8
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\)
\(\Leftrightarrow\frac{1}{a+b}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}\right)\)
Dấu " = " xảy ra <=> a=b
Áp dụng :
\(\frac{1}{2a^3+b^3+c^3+2}=\frac{1}{\left(a^3+b^3+1\right)+\left(a^3+c^3+1\right)}\le\frac{1}{4}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{a^3+c^3+1}\right)\)
Tương tự: \(\frac{1}{2b^3+c^3+a^3+2}=\frac{1}{\left(a^3+b^3+1\right)+\left(b^3+c^3+1\right)}\le\frac{1}{4}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}\right)\)
\(\frac{1}{2c^3+b^3+a^3+2}=\frac{1}{\left(c^3+b^3+1\right)+\left(a^3+c^3+1\right)}\le\frac{1}{4}.\left(\frac{1}{c^3+b^3+1}+\frac{1}{a^3+c^3+1}\right)\)
Cộng vế với vế của 3 BĐT trên ta có:
\(\Sigma\frac{1}{2a^3+b^3+c^3+2}\le\frac{1}{4}.2.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\right)\)\(=\frac{1}{2}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\right)\)
Ta chứng minh BĐT phụ:
\(a^3+b^3\ge ab\left(a+b\right)\)
Thật vậy!
Có: \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2-ab\ge ab\)
\(\Leftrightarrow\left(a+b\right)\left(a^2+b^2-ab\right)\ge ab\left(a+b\right)\)( vì a,b>0 => a+b>0)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
đpcm
Dấu " = " xảy ra <=> a=b
Áp dụng: \(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}\)
Tương tự:\(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(b+c\right)+abc}=\frac{1}{bc\left(a+b+c\right)}\)
\(\frac{1}{a^3+c^3+1}\le\frac{1}{ac\left(a+c\right)+abc}=\frac{1}{ac\left(a+b+c\right)}\)
Cộng vế với vế của 3 BĐT trên ta có:
\(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le\)\(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(a+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=1\)
\(\Rightarrow\Sigma\frac{1}{2a^3+b^3+c^3+2}\le\frac{1}{2}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\right)\le\frac{1}{2}.1=\frac{1}{2}\)
Dấu " = " xảy ra <=> a=b=c=1
Tham khảo nhé~
Áp dụng BĐT Cô-si ta có:
\(a^2+b^2\ge2ab;b^2+1^2\ge2b\)
\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2\)
\(\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}=\frac{1}{2}.\frac{1}{ab+b+1}\)
chứng minh tương tự
\(\Rightarrow\frac{1}{b^2+2c^2+3}\le\frac{1}{2}.\frac{1}{bc+c+1};\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ac+a+1}\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ab+b+1}+\frac{1}{2}.\frac{1}{bc+c+1}+\frac{1}{2}.\frac{1}{ac+a+1}\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
đặt \(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\)
\(=\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\)
\(=\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}=\frac{ac+a+1}{ac+a+1}=1\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.1=2\)
=>đpcm
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)
\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)
Cộng vế với vế ta được :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)
Vậy ta có điều phải chứng mình
Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *
Khi đó:
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
Tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)
\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)
Bài này chả khó với lại đầy người đăng rồi
Ta có: \(a^2+b^2\ge2ab\) và \(b^2+1\ge2b\)
\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}=\frac{1}{2\left(ab+b+1\right)}\left(1\right)\)
Tương tự ta có: \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\left(2\right);\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\left(3\right)\)
Cộng theo vế của \(\left(1\right);\left(2\right);\left(3\right)\) ta có:
\(VT\le\frac{1}{2\left(ab+b+1\right)}+\frac{1}{2\left(bc+c+1\right)}+\frac{1}{2\left(ac+a+1\right)}\)
\(=\frac{1}{2}\left(\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}\right)\left(abc=1\right)\)
\(=\frac{1}{2}\left(\frac{ac+a+1}{ac+a+1}\right)=\frac{1}{2}=VP\) (ĐPCM)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Ta có: \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)\(;b^2+1\ge2\sqrt{b^2\cdot1}=2b\)
\(\Rightarrow a^2+2b^2+3\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2}\left(ab+b+1\right)\left(1\right)\). Tương tự ta có:
\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}\left(bc+c+1\right)\left(2\right);\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\left(ac+a+1\right)\left(3\right)\)
Cộng theo vế của (1);(2) và (3) ta có:
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)
\(\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}\right)=\frac{1}{2}\) (vì abc=1)
Suy ra Đpcm. Dấu "=" khi a=b=c=1
Lời giải:
Xét hiệu: $a^3+b^3-ab(a+b)=(a-b)^2(a+b)\geq 0$ với mọi $a,b>0$
$\Rightarrow a^3+b^3\geq ab(a+b)$
Hoàn toàn tương tự: $b^3+c^3\geq bc(b+c); c^3+a^3\geq ca(c+a)$
Do đó:
$2a^3+b^3+c^3+2=(a^3+b^3)+(a^3+c^3)+2abc\geq ab(a+b)+ac(a+c)+2abc$
$=a(ab+b^2+ac+c^2+2bc)=a[(b^2+c^2+2ab+a(b+c)]=a[(b+c)^2+a(b+c)]$
$=a(b+c)(a+b+c)$
$\Rightarrow \frac{1}{2a^3+b^3+c^3+2}\leq \frac{1}{a(b+c)(a+b+c)}=\frac{bc}{(b+c)(a+b+c)}$
Áp dụng BĐT AM-GM: $bc\leq \frac{(b+c)^2}{4}$ nên:
$\frac{1}{2a^3+b^3+c^3+2}\leq \frac{b+c}{4(a+b+c)}$
Tương tự với các phân thức còn lại:
$\Rightarrow \sum \frac{1}{2a^3+b^3+c^3+2}\leq \frac{2(a+b+c)}{4(a+b+c)}=\frac{1}{2}$
(đpcm)
Dấu "=" xảy ra khi $a=b=c=1$