K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu a mk ko hiểu gì nha xl bn nhìu

b)1-2+3-4+...+99-100

=(1-2)+(3-4)+...+(99-100)

=(-1)+(-1)+...+(-1)

=(-1) . 50

=(-50)

c) 5 + 52 + 53 + ...+ 599 + 5100 

=(5+52)+(53+54)+....+(599+5100)

=30+52(5+52)+...+598(5+52)

=30.1+52.30+.....+598.30

=30(1+52+...+598) chia hết cho 6

Bài 2: 

Ta có: (x-3)(x+4)>0

=>x>3 hoặc x<-4

Bài 3:

a: \(5S=5-5^2+...+5^{99}-5^{100}\)

\(\Leftrightarrow6S=1-5^{100}\)

hay \(S=\dfrac{1-5^{100}}{6}\)

7 tháng 11 2023

Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip

8 tháng 11 2023

#@₫!%&@^@₫@₫=_++_×%@%@&@@@@=@

29 tháng 6 2023

0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)

\(b,S6=1-5^{100}\\ 1-S6=5^{100}\) 

=> 5100 chia 6 du 1

 

29 tháng 6 2023

e đang cần gấp, có ai đến giúp e ko?

AH
Akai Haruma
Giáo viên
13 tháng 12 2022

Lời giải:
a. $(x-3)(y+1)=5=1.5=5.1=(-1)(-5)=(-5)(-1)$
Vì $x-3, y+1$ cũng là số nguyên nên ta có bảng sau:

b.

$A=21+5+(5^2+5^3)+(5^4+5^5)+....+(5^{98}+5^{99})$

$=26+5^2(1+5)+5^4(1+5)+....+5^{98}(1+5)$

$=2+24+(1+5)(5^2+5^4+...+5^{98}$

$=2+24+6(5^2+5^4+....+5^{98})=2+6(4+5^2+5^4+...+5^{98})$

$\Rightarrow A$ chia $6$ dư $2$.

26 tháng 12 2023

1/

Gọi d là ước của n+3 và 2n+5 nên

\(n+3⋮d\Rightarrow2n+6⋮d\)

\(2n+5⋮d\)

\(\Rightarrow2n+6-\left(2n+5\right)=1⋮d\Rightarrow d=1\)

=> n+3 và 2n+5 nguyên tố cùng nhau

2/

\(5A=5+5^2+5^3+5^4+...+5^{100}\)

\(4A=5A-A=5^{100}-1\Rightarrow4A+1=5^{100}=\left(5^{50}\right)^2\) LÀ SỐ CHÍNH PHƯƠNG

3/

Tích của 2 số chẵn liên tiếp là

\(2n.\left(2n+2\right)=4n^2+4n=4n\left(n+1\right)\)

Ta có 

\(n\left(n+1\right)\) Là tích của 2 số tự nhiên liên tiếp và là số chẵn

\(\Rightarrow n\left(n+1\right)=2k\)

\(\Rightarrow4n\left(n+1\right)=4.2k=8k⋮8\)

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

9 tháng 11 2017

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)

5 tháng 8 2023

Sửa câu a

a)Ta có:

\(A=3+3^2+3^3+...+3^{99}\)

 \(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\) 

\(A=\left(3+3^2+3^3\right)+...+3^{96}.\left(3+3^2+3^3\right)\)

\(A=39+...+3^{96}.39\)

\(A=39.\left(1+...+3^{96}\right)\)

Vì 39 \(⋮\) 13 nên 39 . ( 1 + ... + 396 ) \(⋮\) 13

Vậy A \(⋮\) 13

_________

b)Ta có:

 \(B=5+5^2+5^3+...+5^{50}\)

\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)

\(B=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^{48}.\left(5+5^2\right)\)

\(B=30+5^2.30+...+5^{48}.30\)

\(B=30.\left(1+5^2+...+5^{48}\right)\)

Vì 30 \(⋮\) 6 nên 30. ( 1 + 52 + ... + 548 ) \(⋮\) 6

Vậy B \(⋮\) 6

5 tháng 8 2023

a,A=3+32+33+..+399=(3+32+33)+...+(397+398+399)

     =3(1+3+32)+...+397(1+3+32)=3x13+...+397x13=13(3+...+97)⋮13

b,B=5+52+...+550=(5+52)+...+(549+550)=5(1+5)+..+549(1+5)

  =5x6+...+549x6=6(5+..+549)⋮6.

23 tháng 6 2015

ta có a=5k+3

Nên a2= (5k+3)2=25k2+30k+9=25k2+30k+5+4=5(5k2+6k+1)+4 chia cho 5 dư 4 (dpcm)