Tìm gtnn:A=5xy^2+4xy-2x-2y+2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: M=3/4xy^2-2x^2y+2y^3-1/3x^2+1/2x^2y-5xy^2+x^3-y^3
=y^3-1/3x^2+x^3-17/4xy^2-3/2x^2y
Lời giải:
$A=5x^2+y^2+4xy-2x-2y+2020$
$=(4x^2+y^2+4xy)+x^2-2x-2y+2020$
$=(2x+y)^2-2(2x+y)+x^2+2x+2020$
$=(2x+y)^2-2(2x+y)+1+(x^2+2x+1)+2018$
$=(2x+y-1)^2+(x+1)^2+2018\geq 2018$
Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $2x+y-1=0$ và $x+1=0$
Hay $x=-1; y=3$
Mình viết lại cho dễ đọc.
a) A+ x2+4xy + x2- y2 = 2y +3xy- 5x2y +5x2y + 2x2y2
b) A- ( -2 x3) -y2+ 32x2- 4xy - y = 10z2 + y2z2
c) A= -2x + 5xy - 3x2y + 2x2y2 - 2 y2x
B= xy- 3x2y+ 2x2y + 2x2y2 - 2- y2x
\(\frac{x^2+3xy+2y^2}{5x^2+4xy-y^2}-\frac{x^2-5xy+4y^2}{-2x^2+4xy-2y^2}\)
\(=\frac{x+2y}{5x-y}-\left[-\frac{x-4y}{2\left(x-y\right)}\right]\)
\(=\frac{x+2y}{5x-y}+\frac{x-4y}{2\left(x-y\right)}\)
\(=\frac{\left(x+2y\right).2\left(x-y\right)}{\left(5x-y\right).2\left(x-y\right)}+\frac{\left(x-4y\right).\left(5x-y\right)}{2\left(x-y\right).\left(5x-y\right)}\)
\(=\frac{\left(x+2y\right).2\left(x-y\right)+\left(x-4y\right).\left(5x-y\right)}{2\left(x-y\right).\left(5x-y\right)}\)
\(=\frac{7x^2-19xy}{2\left(x-y\right).\left(5x-y\right)}\)
a: \(=\left(4xy^2+2xy^2\right)+\left(3x^2y-3x^2y\right)=6xy^2\)
b: \(=xy\left(\dfrac{1}{5}+\dfrac{1}{3}\right)+xy^2\left(\dfrac{4}{3}-\dfrac{2}{5}\right)=\dfrac{8}{15}xy+\dfrac{14}{15}xy^2\)
d: \(=\dfrac{-4}{9}\cdot\dfrac{3}{2}\cdot xy^2\cdot xy^3=-\dfrac{2}{3}x^2y^5\)
a)\(\left(2x^2+4x^2\right)+\left[\left(-5xy\right)+xy\right]+\left(3y^2-2y^2\right)=6x^2-4xy+y^2\)
b)\(2x^2-5xy+3y^2+4x^2+xy-2y^2+2x^2+4xy-5y^2\)
=\(\left(2x^2+4x^2+2x^2\right)+\left(-5xy+xy+4xy\right)+\left(3y^2-2y^2-5y^2\right)\)
=\(8x^2-4y^2\)