Cho đường tròn (O) có đường kính AB, điểm M thuộc (O) và khác A, B. Các tiếp tuyến
của (O) tại A và M cắt nhau ở điểm C. Đường tròn (I) đi qua M và tiếp xúc với đường thẳng
AC tại C. Các đường thẳng CB và CO lần lượt cắt (I) tại điểm thứ hai E và F. Vẽ đường
kính CD của (I), giao điểm của hai đường thẳng DE và AB là K.
a) Chứng minh tam giác OCD cân và tứ giác OEFK nội tiếp.
b) Chứng minh hai tam giác OEF và CED đồng dạng.
c) Đường thẳng đi qua hai điểm chung của (O) và (I) cắt đường thẳng AC tại điểm H.
Chứng minh các đường thẳng AF, CK và OH đồng quy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vẽ tiếp tuyến tại C cắt đường AB ở P. Phân giác C P B ^ cắt OC ở I. Vẽ đường tròn tâm I bán kính IC, đó là đường tròn cần tìm
b, Do A C B ^ = 90 0 nên M C N ^ = 90 0
=> MN là đường kính của (I) => ĐPCM
c, Chứng minh được MN//AB nên ID ^ MN => M D ⏜ = N D ⏜ hay CD là tia phân giác A C B ^ => Đpcm
Vì góc ACB là có nội tiếp chắn nửa đường tròn của (O)
=> góc ACB= 90 độ
Xét (I) có góc MCN là góc nội tiếp chắn cung MN
mà góc MCN= 90 độ
=> MN là đường kính của (I)
=> 3 điểm M,I,N thẳng hàng
b) vì Δ CIN cân tại I( IC=IN=R)
=> góc ICN= góc INC
lại có Δ COB cân tại O(OC=OB=R)
=> góc OCB= góc OBC
=> góc INC= góc OBC ( cùng = góc OCB)
mà 2 góc này ở vị trí đồng vị của 2 đường thẳng MN và AB
=> MN // AB
lại có ID vuông góc với AB
=> ID vuông góc với MN( đpcm)
Chọn đáp án D
* Gọi (O’) là đường tròn đi qua D và tiếp xúc với AB tại B.
Đường tròn (O’) cắt CB tại F khác B. Chứng minh E F / / A B .
Ta có:
Hai góc ở vị trí đồng vị ⇒ E F / / A B
1: góc CND=góc CHD=90 độ
=>CNHD nội tiếp
2: góc CMO=góc DMH=90 độ-góc MDH
=90 độ-góc CDO
=góc OCM
=>ΔCOM cân tại C