Cho p là số nguyên tố lớn hơn 5. Cmr các số p4 - 1 có ươc chung lớn nhất là 240
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: p4 – q4 = (p4 – 1 ) – (q4 – 1) ; 240 = 8 .2.3.5
Chứng minh p4 – 1 240
- Do p >5 nên p là số lẻ
+ Mặt khác: p4 –1 = (p –1) (p + 1) (p2 +1)
--> (p-1 và (p+1) là hai số chẵn liên tiếp => (p – 1) (p+1) 8
+ Do p là số lẻ nên p2 là số lẻ -> p2 +1 2
- p > 5 nên p có dạng:
+ p = 3k +1 --> p – 1 = 3k + 1 – 1 = 3k 3 --> p4 – 1 3
+ p = 3k + 2 --> p + 1 = 3k + 2 + 1 = 3k +3 3 --> p4 – 1 3
- Mặt khác, p có thể là dạng:
+ P = 5k +1 --> p – 1 = 5k + 1 – 1 = 5k 5 --> p4 – 1 5
+ p = 5 k+ 2 --> p2 + 1 = (5k +2)2 +1 = 25k2 + 20k +5 5 --> p4 – 1 5
+ p = 5k +3 --> p2 +1 = 25k2 + 30k +10 --> p4 –1 5
+ p = 5k +4 --> p + 1 = 5k +5 5 --> p4 – 1 5
Vậy p4 – 1 8 . 2. 3 . 5 hay p4 – 1 240
Tương tự ta cũng có q4 – 1 240
Vậy: (p4 – 1) – (q4 –1) = p4 – q4 240
chúc bạn học tốt :)
Ta có: p4-1=(p2)2-1=(p2-1).(p2+1)=(p-1).(p+1).(p2+1)
Vì p là số nguyên tố lớn hơn 5
=>p lẻ
=>p-1 và p+2 là 2 số chẵn liên tiếp
=>(p-1).(p+1) chia hết cho 8
Vì p lẻ=>p2 lẻ=>p2+1 chẵn=>p2+1 chia hết cho 2
=>(p-1).(p+1).(p2+1) chia hết cho 16
=>p4-1 chia hết cho 16(1)
Lại có: p là số nguyên tố lớn hơn 5
=>p không chia hết cho 3
=>p4 chia 3 dư 1
=>p2-1 chia hết cho 3(2)
Mặt khác: p là số nguyên tố lớn hơn 5
=>p có 4 dạng 5k+1,5k+1,5k+3,5k+4
-Với p=5k+1=>p-1 chia hết cho 5=>(p-1).(p+1).(p2)-1 chia hết cho 5
=>p4-1 chia hết cho 5
-Với p=5k+2=>p2+1=(5k+2)2-1=(5k)2+2.2.5k+22+1=5.5.k2+5.4.k+5 chia hết cho 5
=>(p-1).(p+1).(p2)-1 chia hết cho 5
=>p4-1 chia hết cho 5
-Với p=5k+3=>p2-1=(5k+3)2-1=(5k)2+2.3.5k+32+1=5.5.k2+5.6.k+10 chia hết cho 5
=>(p-1).(p+1).(p2)-1 chia hết cho 5
=>p4-1 chia hết cho 5
-Với p=5k+4=>p+1 chia hết cho 5=>(p-1).(p+1).(p2)-1 chia hết cho 5
=>p4-1 chia hết cho 5
=>p4-1 chia hết cho 5(3)
Tư (1),(2) và (3) ta thấy:
p4-1 chia hết cho 16,3,5
mà (16,3,5)=1
=>p4-1 chia hết cho 16.3.5
=>p4-1 chia hết cho 240
=>ĐPCM
Ta có: p4 – q4 = (p4 – 1 ) – (q4 – 1) ; 240 = 8 .2.3.5
Chứng minh p4 – 1 240
- Do p >5 nên p là số lẻ
+ Mặt khác: p4 –1 = (p –1) (p + 1) (p2 +1)
--> (p-1 và (p+1) là hai số chẵn liên tiếp => (p – 1) (p+1) 8
+ Do p là số lẻ nên p2 là số lẻ -> p2 +1 2
- p > 5 nên p có dạng:
+ p = 3k +1 --> p – 1 = 3k + 1 – 1 = 3k 3 --> p4 – 1 3
+ p = 3k + 2 --> p + 1 = 3k + 2 + 1 = 3k +3 3 --> p4 – 1 3
- Mặt khác, p có thể là dạng:
+ P = 5k +1 --> p – 1 = 5k + 1 – 1 = 5k 5 --> p4 – 1 5
+ p = 5 k+ 2 --> p2 + 1 = (5k +2)2 +1 = 25k2 + 20k +5 5 --> p4 – 1 5
+ p = 5k +3 --> p2 +1 = 25k2 + 30k +10 --> p4 –1 5
+ p = 5k +4 --> p + 1 = 5k +5 5 --> p4 – 1 5
Vậy p4 – 1 8 . 2. 3 . 5 hay p4 – 1 240
Tương tự ta cũng có q4 – 1 240
Vậy: (p4 – 1) – (q4 –1) = p4 – q4 240
Xét p,q có dạng 2k + 1 hoặc 5k + 1 (k là số tự nhiên)