các bạn giói toán ơi, làm ơn giúp mk với ạ: Cho tam giác ABC vuông tại B. Tia phân giác của A cắt BC tại D. so sánh độ dài BD và BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé =)))
a) Chứng minh t. giácDBA = t.giácDBH
Xét t. giácDBA ( ABD = 90O ) và t.giácDBH ( DHB = 90O ) có :
ABD = DBH ( vì BD là p/giác )
BD là cạnh chung
=) t. giácDBA = t.giácDBH ( ch-gn )
b) So sánh độ dài đoạn AD và DC
Vì t. giácDBA = t.giácDBH ( cm ở câu a )
=) AB = DH
Xét t.giác DHC ( DHC = 90O ) có :
DC là cạnh huyền
=) DC là cạnh lớn nhất
=) DC > DH
mà DH = AD
=) AD < DC
c) Chứng minh BD vuông MC
Xét t.giác BMC có :
CA là đường cao tương ứng cạnh BA ( Vì CA vuông góc vs BA )
MH là đường cao tương ứng cạnh BC ( Vì MH vuông góc s BC )
mà CA cắt MH tại D
=) D là trực tâm của t.giác BMC
mà BD đi qua D
=) BD là đường cao của tam giác BMC
=) BD vuông MC
d) Chứng minh AH song song MC
Vì AB = BA ( vì t. giácDBA = t.giácDBH )
=) t.giác BAH cân tại B
Xét t.giác BAH cân tại B ( cmt ) có :
BD là đường p/giác ( gt )
=) BD cũng đồng thời là đường cao
=) BD vuông góc vs AH
Ta có :
BD vuông góc vs AH
mà BD cũng vuông góc vs MC
=) AH // MC
=)))
a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có
=> AB = 3 cm
Mà AB = AD ( gt)
=> AB = AD = 3cm
b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:
=> DC = 5 cm
=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :
AB = AD
BC = CD (5cm)
=> Tam giác CAB = tam giác CAD(cgv-ch)
c) Vì BC//DE
=> BCM = MDE (so le trong)
Xét tam giác BMC và tam giác DME ta có :
DM = MC
BCM = MDE(cmt)
DME = BMC
=> Tam giác BMC = tam giác DME (g.c.g)
=> BC=DE(dpcm)
d)chịu
Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AD=AB
a, Cho biết AC=4cm, BC=5cm. Tính độ dài AB và BD. Hãy so sánh các góc của tam giác ABC
b, Chứng minh tam giác CBD cân
c, Gọi M là trung điểm của CD, đường thẳng qua D và song song với BC cắt đường thẳng BM tại E. Chứng minh rằng BC = DE và BC+BD>BE
d, Gọi K là gia điểm của AE và DM. Chứng minh rằng BC=6KM
Giải
a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có
=> AB = 3 cm
Mà AB = AD ( gt)
=> AB = AD = 3cm
b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:
=> DC = 5 cm
=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :
AB = AD
BC = CD (5cm)
=> Tam giác CAB = tam giác CAD(cgv-ch)
c) Vì BC//DE
=> BCM = MDE (so le trong)
Xét tam giác BMC và tam giác DME ta có :
DM = MC
BCM = MDE(cmt)
DME = BMC
=> Tam giác BMC = tam giác DME (g.c.g)
=> BC=DE(dpcm)
Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??
nếu em học cạnh và góc đối diện rồi thì đoạn BD = 1 nửa BC
Bạn xem lại đề đi so sánh BD và DC hay BD và BC.