Cho M=1+3+32+33+...+398+399+3100
Tìm số dư khi chia M cho 13
Giải cách làm ra dùm mình nữa nhé. Mình cần gấp để mai đi thi
Ai làm đúng mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :abcdeg=ab.10000+cd.100+eg
=9999.ab+99.cd+ab+cd+eg
=﴾9999ab+99cd﴿+﴾ab+cd+eg﴿
Vì 9999ab+99cd chia hết cho 11 và ab+cd+eg chia hết cho 11
=>abcdeg chia hết cho 11
Vậy nếu có ab+cd+egchia hết cho 11 thì abcdeg chia hết cho 11
a: (x-3)(y+1)=15
=>\(\left(x-3\right)\left(y+1\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>(x-3;y+1)\(\in\){(1;15);(15;1);(-1;-15);(-15;-1);(3;5);(5;3);(-3;-5);(-5;-3)}
=>(x,y)\(\in\){(4;14);(18;0);(2;-16);(-12;-2);(6;4);(8;2);(0;-6);(-2;-4)}
b: Sửa đề:\(m=1+3+3^2+3^3+...+3^{99}+3^{100}\)
\(m=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=4+13\left(3^2+3^5+...+3^{98}\right)\)
=>m chia 13 dư 4
\(m=1+3+3^2+...+3^{99}+3^{100}\)
\(=1+\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1+3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)
\(=1+40\left(3+3^5+...+3^{97}\right)\)
=>m chia 40 dư 1
Ta có:
\(1+3+3^2+3^3+...+3^{99}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{100}\right)-\left(1+3+3^2+...+3^{99}\right)\)
\(\Rightarrow2S=3^{100}-1\)
\(\Rightarrow2S+1=3^{100}-1+1=3^{100}\)
\(\Rightarrow2S+1\) là lũy thừa của 3
Số cần tìm bớt đi 1 đơn vị được số mới chia hết cho 2; 3; 5; 7
Số mới là
2x3x5x7=210
Số cần tìm là
210+1=211
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}=\left(1-3+3^2-3^3\right)+3^4\left(1-3+3^3-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)=\left(-20\right)+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)=\left(-20\right)\left(1+3^4+...+3^{96}\right)⋮20\)
Ta có: \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)
\(=-20\cdot\left(1+...+3^{96}\right)⋮20\)
Ta có :
a=x459y chia cho 2 và 5 đều dư 1 => y = 1 hoặc 6
Nếu y =6 thì a sẽ chia hết cho 2
=> y = 1
a = x4591 chia cho 9 dư 1
=> x + 4 + 5 + 9 + 1 chia cho 9 dư 1
= x + 19 chia cho 9 dư 1
=> x = 9
Vậy, a = 94591
M = 1 + 3 + (32 + 33 + 34) +..... + (398 + 399 + 3100)
M = 4 + 32.13 + ..... +398.13
= 13.(32 + 35 + ... + 398) + 4
=>? M chia 13 dư 4