Cho tam giác ABC và tam giác A phẩy B phẩy C phẩy có các đường cao AD và A phẩy B phẩy biết a = a Phẩy hát 7 Chứng minh tam giác ABC bằng tam giác A phẩy B phẩy C phẩy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu vi của tam giác ABC là
C=AB+BC+CA=10+24+30=64(cm)
Ta có : tg A'B'C' đồng dạng tg ABC
=>\(\dfrac{CvitgA'B'C'}{CvitgABC}=\dfrac{A'B'}{AB}\left(tisochuvi=tisodongdang\right)\)
=>\(\dfrac{128}{64}=\dfrac{A'B'}{10}\)
=>A'B'=\(\dfrac{128.10}{64}=20\left(cm\right)\)
Chứng minh tương tự B'C'=60cm
A'C'=48cm
Vẽ tia AG là tia đối của tia AC
Ta có: \(\widehat{FAB}=\widehat{ABC}\)(hai góc so le trong, AF//BC)
\(\widehat{GAF}=\widehat{ACB}\)(hai góc đồng vị, AF//BC)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{BAF}=\widehat{GAF}\)
hay Ax là tia phân giác của góc ngoài tại đỉnh A(đpcm)
Vì tam giác ABC vuông tại A
=> BC2 = AB2 + AC2 ( Định lí Py-ta-go)
=> BC2 = 42 + 32
=> BC2 = 16 + 9
=> BC2 = 25
=> BC = 5 cm
Diện tích xung quanh của hình lăng trụ đứng là
\(S_{xq}=2p.h=\left(5+4+3\right).9=108\left(cm^2\right)\)
Diện tích toàn phần hình lăng trụ đứng là
\(S_{tp}=S_{xq}+2S_{đáy}=108+2.\left(\dfrac{1}{2}4.3\right)=108+12=120\left(cm^2\right)\)
Thể tích hình lăng trụ đứng là
\(V=S_{đáy}.h=12.9=108\left(cm^2\right)\)