K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Ta có : \(A>\frac{1}{3^2}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)

\(\rightarrow A>\frac{1}{9}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{50}-\frac{1}{51}\)

\(\rightarrow A>\frac{1}{4}+\left(\frac{1}{9}-\frac{1}{51}\right)\)

Xét : \(\frac{1}{9}-\frac{1}{51}>0\rightarrow A>\frac{1}{4}\left(đpcm\right)\)

18 tháng 2 2017

bạn giải đi

20 tháng 2 2017

Phần a, A> 1/3.4+1/4.5+1/5.6+...+ 1/50.51 = 1/3-1/4+1/4-1/5+1/5-1/6+...+ 1/50-1/51 = 1/3-1/51 = 48/153  > 48/192 =1/4. ĐPCM

Phần b, A< 1/3^2+1/3.4+1/4.5+...+1/49.50 = 1/9+1/3-1/4+1/4-1/5+...+ 1/49-1/50 = 1/9+1/3-1/50 = 1/9+47/150 < 1/9+50/150 = 1/9+1/3 = 4/9. ĐPCM

25 tháng 8 2016

Ta có

\(A>\frac{1}{3^2}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)

\(\Rightarrow A>\frac{1}{9}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{50}-\frac{1}{51}\)

\(\Rightarrow A>\frac{1}{4}+\left(\frac{1}{9}-\frac{1}{51}\right)\)

\(\Rightarrow A>\frac{1}{4}+\frac{42}{9.51}>\frac{1}{4}\)

Vậy A>1/4

b)

Ta có

\(A< \frac{1}{3}^2+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{49.50}\)

\(\Rightarrow A< \frac{1}{9}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{59}-\frac{1}{50}\)

\(\Rightarrow A< \frac{4}{9}-\frac{1}{50}< \frac{4}{9}\)

Vậy A<4/9

25 tháng 8 2016

thank nha ha