K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2020

\(f\left(x\right)=\left(m+1\right)x^2+mx+m\)

TH1: \(m+1=0\Leftrightarrow m=-1\Rightarrow f\left(x\right)>0,\forall x\in R\)

TH2: \(m+1\ne0\Leftrightarrow m\ne-1\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}\Delta=-3m^2-4m< 0\\m+1< 0\end{matrix}\right.\Leftrightarrow m< -\frac{4}{3}\)

Đ/s: \(m< -\frac{4}{3};m=-1\)

30 tháng 3 2023

TH1: �+1=0⇔�=−1⇒�(�)>0,∀�∈�

TH2: �+1≠0⇔�≠−1

Yêu cầu bài toán thỏa mãn khi {Δ=−3�2−4�<0�+1<0⇔�<−43

Đ/s: �<−43;�=−1

 

27 tháng 6 2021

1, y' = \(\dfrac{m^2-9}{\left(3x-m\right)^2}\)

ycbt <=> \(\left\{{}\begin{matrix}m^2-9< 0\\\dfrac{m}{-3}\ne x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3< m< 3\\m\ge0\end{matrix}\right.\)

\(\Leftrightarrow0\le m\le3\)

27 tháng 6 2021

bài 2,3 đợi mình tí, gõ máy mất thời gian quá nếu mà được thì tối mình chụp lại cho

16 tháng 11 2021

\(hình\) \(như\) \(sai\) \(bn\) \(ạ\) \(vì:m=-2\Rightarrow\left\{{}\begin{matrix}\left(1\right):x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x1=1\\x2=-2\end{matrix}\right.\\\left(2\right)x^2-2x+1=0\Rightarrow\left[{}\begin{matrix}x1=1\\x2=1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow S1\ne S2\Rightarrow\left(1\right)\ne\left(2\right)\)

\(x^2+x+m=0\left(1\right)\)

\(x^2+mx+1=0\left(2\right)\)

\(tương\) \(đương\) \(TH1:\left(1\right)\left(2\right)vô-nghiệm\Leftrightarrow\left\{{}\begin{matrix}\Delta1< 0\\\Delta2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-4m< 0\\m^2-4< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{1}{4}\\-2< m< 2\end{matrix}\right.\)\(\Leftrightarrow\dfrac{1}{4}< m< 2\)

\(TH2:\left(1\right)\left(2\right)có-ngo-kép-chung\)

\(\left(2\right)\Rightarrow\Delta=0\Rightarrow m^2-4=0\Leftrightarrow m=\pm2\Rightarrow\left(1\right):x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x1=1\\x2=-2\end{matrix}\right.\left(ktm\right)\)

\(với:m=2\Rightarrow\left(1\right):x^2+x+2=0\left(vô-ngo\right)\)

\(\Rightarrow\dfrac{1}{4}< m< 2\) \(thì....\)

 

16 tháng 11 2021

\(\left(1\right)\Leftrightarrow m=-x^2-x\)

Thay vào (2)

\(\left(2\right)\Leftrightarrow x^2-\left(x^2+x\right)x+1=0\\ \Leftrightarrow1-x^3=0\\ \Leftrightarrow\left(1-x\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow x=1\left(x^2+x+1>0\right)\\ \Leftrightarrow m=-1-1=-2\)

 

Trường hợp 1: m=0

Phương trình sẽ là \(-2\cdot\left(-1\right)x+0-2=0\)

=>2x-2=0

=>x=1

=>Loại

Trường hợp 2: m<>0

Để phương trình có hai nghiệm trái dấu thì m(m-2)<0

=>0<m<2

NV
30 tháng 7 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x^2-2mx+m^2-m+3=0\left(1\right)\end{matrix}\right.\)

Pt có 3 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}1-2m+m^2-m+3\ne0\\\Delta'=m^2-\left(m^2-m+3\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m+4\ne0\left(\text{luôn đúng}\right)\\m>3\end{matrix}\right.\) 

Vậy \(m>3\)

b.

Phương trình có 3 nghiệm pb khi và chỉ khi: \(mx^2+3x+m=0\) có 2 nghiệm pb khác 3

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\9m+9+m\ne0\\\Delta=9-4m^2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{9}{10}\\-\dfrac{3}{2}< m< \dfrac{3}{2}\end{matrix}\right.\)

6 tháng 12 2021

\(\Delta=4\left(m+1\right)^2-4m\left(m+1\right)\\ =4\left(m^2+2m+1\right)-4m^2-4m\\ =4m^2+8m+4-4m^2-4m\\ =4m+4\)

Để pt vô nghiệm thì \(4m+4< 0\\ \Rightarrow m< -1\)

Trường hợp 1: m=0

BPT sẽ là -4x-5>0

=>Loại

Trường hợp 2: m<>0

Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(4m+4\right)^2-4m\left(m-5\right)< =0\\m< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}16m^2+32m+16-16m^2+20< =0\\m< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}32m+36< =0\\m< 0\end{matrix}\right.\Leftrightarrow m< =-\dfrac{9}{8}\)

18 tháng 2 2021

giúp mình vớiii

NV
7 tháng 5 2023

\(f'\left(x\right)=3\left(m-1\right)x^2+4\left(m-1\right)x+m\)

- Với \(m=1\Rightarrow f'\left(x\right)=1>0\) (không thỏa mãn)

- Với \(m\ne1\Rightarrow f'\left(x\right)< 0;\forall x\) khi và chỉ khi:

\(\left\{{}\begin{matrix}\Delta'=4\left(m-1\right)^2-3m\left(m-1\right)< 0\\m-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1< m< 4\\m< 1\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

AH
Akai Haruma
Giáo viên
4 tháng 4 2021

Lời giải: 

Với $x>1$

$f(x)=m(x^2+2x+1)-2x+3>0\Leftrightarrow m>\frac{2x-3}{(x+1)^2}$

$\Leftrightarrow m>\frac{2x-3}{(x+1)^2}(\max)$ khi $x>1$

Xét $g(x)=\frac{2x-3}{(x+1)^2}$ với $x>1$

$g(x)=\frac{2(x+1)-5}{(x+1)^2}=\frac{2}{x+1}-\frac{5}{(x+1)^2}=\frac{1}{5}-5(\frac{1}{x+1}-\frac{1}{5})^2\leq \frac{1}{5}$ với mọi $x>1$

Do đó: $m>\frac{1}{5}$