K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

Đc lém Min đúng lúc tui đang định đăng câu ó

3 tháng 8 2018

\(Ta\)  \(có\)  \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{256}\)

                   \(Vì\)  \(1>\frac{1}{256},\frac{1}{2}>\frac{1}{256},....,\frac{1}{255}>\frac{1}{256},\frac{1}{256}=\frac{1}{256}\)

                 \(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{256}>\frac{1}{256}+\frac{1}{256}+...+\frac{1}{256}\)

                  \(=\frac{1}{256}.256=1\)\(< 5\)

25 tháng 4 2018

1) \(x^2y+x\left(2y-1\right)=7\)

\(\Leftrightarrow x^2y+2xy-x=7\)

\(\Leftrightarrow xy\left(x+2\right)-x-2=7-2\)

\(\Leftrightarrow xy\left(x+2\right)-\left(x+2\right)=5\)

\(\Leftrightarrow\left(xy-1\right)\left(x+2\right)=5\)

\(\Rightarrow\)xy - 1 và x + 2 là ước của 5 là \(\pm1;\pm5\)

đến đây tự lm đc

25 tháng 4 2018

2 ) \(B=\frac{255}{1}+\frac{254}{2}+\frac{253}{3}+....+\frac{3}{253}+\frac{2}{254}+\frac{1}{255}\)

\(=\left(\frac{254}{2}+1\right)+\left(\frac{253}{3}+1\right)+....+\left(\frac{2}{254}+1\right)+\left(\frac{1}{255}+1\right)+1\)

\(=\frac{256}{2}+\frac{256}{3}+....+\frac{256}{255}+\frac{256}{256}\)

\(=256\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{255}+\frac{1}{256}\right)=256A\)

\(\Rightarrow\frac{B}{A}=256=16^2\) Là số CP (đpcm)

4 tháng 7 2019

\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{17}}.\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{256}-\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}-\frac{-5}{8}\)

\(\frac{1.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}{2.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{4}\right)}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{3}{4}+\frac{63}{256}\right)}{\frac{3}{4}+\frac{3}{64}}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{3}{4}+\frac{63}{256}\right)}{\frac{3}{4}+\frac{12}{256}}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.3.\left(\frac{1}{4}+\frac{21}{256}\right)}{3.\left(\frac{1}{4}+\frac{1}{64}\right)}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{1}{4}+\frac{1}{64}+\frac{17}{256}\right)}{\frac{1}{4}+\frac{1}{64}}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{1}{4}+\frac{1}{64}\right)+3.\frac{17}{256}:\left(\frac{1}{4}+\frac{1}{64}\right)}{1.\left(\frac{1}{4}+\frac{1}{64}\right)}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(3+\frac{51}{256}:\frac{17}{64}\right)+\frac{5}{8}\) 

\(\frac{1}{2}.\left(3+\frac{3}{4}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\frac{15}{4}+\frac{5}{8}\)

\(\frac{15}{8}+\frac{5}{8}\)

\(\frac{5}{2}\)

4 tháng 7 2019

\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{17}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}-\frac{-5}{8}\)

\(=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{2.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{111}{68}+\frac{5}{8}\)

\(=\frac{49}{34}\)

21 tháng 6 2015

đây là toán lớp 6 sao trông khó khó

21 tháng 6 2015

    \(B=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

=>\(B=\frac{1.\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{13}\right)}{3.\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{14}\right)}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}{\frac{4}{4}-\frac{4}{16}-\frac{4}{64}-\frac{4}{256}}+\frac{5}{8}\)

=>\(B=\frac{1}{3}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}{4.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}+\frac{5}{8}\)

=>\(B=\frac{1}{3}.\frac{3}{4}+\frac{5}{8}\)

=>\(B=\frac{1}{4}+\frac{5}{8}\)

=>\(B=\frac{2}{8}+\frac{5}{8}\)

=>\(B=\frac{7}{8}\)

l-i-k-e cho mình nhé bạn.

9 tháng 3 2017

a) \(\frac{1}{9}\)

b) -1100