Phân tích
6x^4+y^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn sai ở dấu bằng thứ 4. Mình làm lại nhé.
\(\left(x+y\right)^4+x^4+y^4\)
\(=\left[\left(x+y\right)^2\right]^2+x^4+y^4\)
\(=\left(x^2+2xy+y^2\right)^2+x^4+y^4\)
\(=x^4+4x^2y^2+y^4+4x^3y+4xy^3+2x^2y^2+x^4+y^4\)
\(=2x^4+4x^3y+6x^2y^2+4xy^3+2y^4\)
\(=2\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)\)
\(=2.\left[\left(x^4+2x^3y+x^2y^2\right)+\left(2x^2y^2+2xy^3\right)+y^4\right]\)
\(=2.\left[\left(x^2+xy\right)^2+2.\left(x^2+xy\right).y^2+\left(y^2\right)^2\right]\)
\(=2.\left(x^2+xy+y^2\right)^2\)
Học tốt nhe.
Có: \(\left(x+y\right)^4+x^4+y^4\)
\(=\left(x+y\right)^4+\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left[\left(x+y\right)^4-x^2y^2\right]+\left[\left(x^2+y^2\right)^2-x^2y^2\right]\)
\(=\left[\left(x^2+y^2+2xy\right)^2-\left(xy\right)^2\right]+\left[\left(x^2+y^2\right)^2-\left(xy\right)^2\right]\)
\(=\left(x^2+y^2+xy\right)\left(x^2+y^2+3xy\right)+\left(x^2+y^2+xy\right)\left(x^2+y^2-xy\right)\)
\(=2\left(x^2+y^2+xy\right)\left(x^2+y^2+xy\right)=2\left(x^2+y^2+xy\right)^2\)
\(16-x^2\)
\(=\left(4-x\right)\left(4+x\right)\)
\(---\)
\(16-3x+1^2\) (kt lại đề bài nhé)
\(x^4y^4+4x^2y^2+4\)
\(=\left[\left(xy\right)^2\right]^2+2\cdot\left(xy\right)^2\cdot2+2^2\)
\(=\left[\left(xy\right)^2+2\right]^2=\left(x^2y^2+2\right)^2\)
\(---\)
\(y^2-4y+4-x^2\)
\(=y^2-2\cdot y\cdot2+2^2-x^2\)
\(=\left(y-2\right)^2-x^2\)
\(=\left(y-2-x\right)\left(y-2+x\right)\)
\(=\left[2\left(xy+4\right)-4\left(x+y\right)\right]\left[2\left(xy+4\right)+4\left(x+y\right)\right]=\left(2xy+8-4x-4y\right)\left(2xy+8+4y+4x\right)\\ =4\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\\ =4\left[x\left(y-2\right)-2\left(y-2\right)\right]\left[x\left(y+2\right)+2\left(y+2\right)\right]\\ =4\left(y-2\right)\left(y+2\right)\left(x-2\right)\left(x+2\right)\)
\(6x^4+y^4\)
\(=\left(\sqrt{6}x^2\right)^2+2\sqrt{6}x^2y^2+y^4-2\sqrt{6}x^2y^2\)
\(=\left(\sqrt{6}x^2+y^2\right)^2-\left(\sqrt{2\sqrt{6}x^2y^2}\right)^2\)
\(=\left(\sqrt{6}x^2+y^2\right)^2-\left(\sqrt{2}.\sqrt[4]{6}xy\right)^2\)
\(=\left(\sqrt{6}x^2+y^2-\sqrt{2}\sqrt[4]{6}xy\right)\left(\sqrt{6x^2+\sqrt{2}}.\sqrt[4]{6}xy+y^2\right)\)
Sorry :vv
Dòng cuối lỗi tẹo :">
\(=\left(\sqrt{6}x^2-\sqrt{2}.\sqrt[4]{6}xy+y^2\right)\left(\sqrt{6}x^2+\sqrt{2}.\sqrt[4]{6}xy+y^2\right)\)