Cho \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\). Tìm a,b,c,d biết f(x) chia cho x-1; x-2; x+3 cùng dư 2 và chia cho x+2 dư -10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(g(x)=10x\).
Ta có \(g\left(1\right)=10=f\left(1\right);g\left(2\right)=20=f\left(2\right);g\left(3\right)=30=f\left(3\right)\).
Từ đó \(\left\{{}\begin{matrix}f\left(1\right)-g\left(1\right)=0\\f\left(2\right)-g\left(2\right)=0\\f\left(3\right)-g\left(3\right)=0\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=Q\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\).
\(\Rightarrow f\left(x\right)=10x+Q\left(x\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
\(\Rightarrow f\left(8\right)+f\left(-4\right)=80+Q\left(x\right).7.6.5+\left(-40\right)+Q\left(x\right).\left(-5\right).\left(-6\right).\left(-7\right)=80-50=40\).
Đoạn cuối mình làm nhầm nhé.
Đáng lẽ phải cm Q(x) là đa thức dạng x + m, rồi biến đổi \(f\left(8\right)+f\left(-4\right)=80+Q\left(8\right).7.6.5+\left(-40\right)+Q\left(-4\right).\left(-5\right).\left(-6\right).\left(-7\right)=80-40+\left(m+8\right).7.6.5-\left(m-4\right).5.6.7=12.5.6.7+40=2560\).
Mình đánh vội nên chưa suy nghĩ kĩ.
Ta có:
\(f\left(x\right)=ax^3+bx^2+cx+d\\ f\left(x\right)=0x^3+0x^2+0x+0\)
\(\Rightarrow a=b=c=d\left(theo.pp.đa.thức.đồng.nhất\right)\\ Chúc.bạn.học.Toán.tốt.\)
\(f\left(-1\right)=2\Rightarrow-a+b-c+d=2\\ f\left(0\right)=1\Rightarrow d=1\\ f\left(1\right)=7\Rightarrow a+b+c+d=7\\ f\left(\dfrac{1}{2}\right)=3\Rightarrow\dfrac{1}{8}a+\dfrac{1}{4}b+\dfrac{1}{2}c+d=3\)
\(d=1\Rightarrow-a+b-c=1;a+b+c=6\\ \Rightarrow2b=7\\ \Rightarrow b=\dfrac{7}{2}\\ \Rightarrow\dfrac{1}{8}a+\dfrac{7}{8}+\dfrac{1}{2}c=2\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{4}a+\dfrac{7}{4}+c\right)=2\\ \Rightarrow\dfrac{1}{4}a+\dfrac{7}{4}+c=4\\ \Rightarrow a+7+4c=16\\ \Rightarrow a+4c=9;a+c=6-\dfrac{7}{2}=\dfrac{5}{2}\\ \Rightarrow3c=\dfrac{13}{2}\Rightarrow c=\dfrac{13}{6}\\ \Rightarrow a=\dfrac{5}{2}-\dfrac{13}{6}=\dfrac{1}{3}\)
Vậy \(\left(a;b;c;d\right)=\left(\dfrac{1}{3};\dfrac{7}{2};\dfrac{13}{6};1\right)\)
Đặt \(g\left(x\right)=2014x\).
Ta có \(f\left(1\right)-g\left(1\right)=0;f\left(2\right)-g\left(2\right)=0;f\left(3\right)-g\left(3\right)=0\).
Do đó \(f\left(x\right)-g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)Q\left(x\right)\).
\(f\left(x\right)=2014x+\left(x-1\right)\left(x-2\right)\left(x-3\right)Q\left(x\right)\).
Do f(x) có bậc 4, hệ số cao nhất là 1 nên Q(x) là đa thức có dạng x + m.
Từ đó \(f\left(x\right)=2014x+\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x+m\right)\)
\(\Rightarrow f\left(-1\right)+f\left(5\right)=2014.\left(-1\right)+\left(-2\right).\left(-3\right).\left(-4\right)\left(m-1\right)+2014.5+4.3.2\left(m+5\right)=12228\).
Mình có nghĩ ra cách này mọi người xem giúp mình với
f(x) = \(ax^2+bx+c\)
Ta có f(0) = 2 => c = 2
Ta đặt Q(x) = \(ax^2+bx+c-2020\)
và G(x) = \(ax^2+bx+c+2021\)
f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư
\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)
Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0
hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)
G(x) chia cho x + 1 số dư
\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)
Mà G(x) chia hết cho x + 1 nên \(R_2\)=0
hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)
Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
Theo định lý Bezout ta có:
\(f\left(1\right)=f\left(2\right)=f\left(-3\right)=2;f\left(-2\right)=-10\)
Ta có:
\(f\left(1\right)=a+b+c+d+1=2\)
\(f\left(2\right)=8a+4b+2c+d+16=2\)
\(f\left(-3\right)=-27a+9b-3c+d+81=2\)
\(f\left(-2\right)=-8a+4b-2c+d+16=-10\)
Đến đây bạn dùng Casio fx 580 tìm nghiệm hộ mình nhé !