Tính (a + b + c)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)^3=a^3+b^3+c^3\)
=>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=a^3+b^3+c^3\)
=>\(3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(T=\left(a+b\right)\cdot\left(b+c\right)^2\cdot\left(c+a\right)^2\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\cdot\left(b+c\right)\left(a+c\right)\)
\(=0\cdot\left(b+c\right)\left(a+c\right)\)
=0
Ta có \(E=\frac{a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a+b+c\right)\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=a+b+c=1\)
Ở đây chú ý rằng \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)=-\left(a+b+c\right)\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Sửa đề lại tí cho chuẩn nha: a+b+c=0, tính R = (a-b)c3 + (b-c)a3 + (c-a)b3
R = ac3 - bc3 + ba3 - ca3 + cb3 - ab3 = ab(a2-b2) + ac(c2-a2) + bc(b2-c2)
= ab(a-b)(a+b) + ac(c-a)(a+c) + bc(b-c)(b+c)
Thay a+b=-c, b+c=-a, c+a=-b vào -->R = abc(b-a) + abc(a-c) +abc(c-b) = abc(b-a+a-c+c-b) = 0
Câu hỏi của Solyver - Toán lớp 7 - Học toán với OnlineMath
Ta có: \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=-3\)
\(\Leftrightarrow\left(a-c\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-c\right)+\left(c-a\right)^3=-3\)
\(\Leftrightarrow-3\left(a-b\right)\left(b-c\right)\left(a-c\right)=-3\)
hay (a-b)(b-c)(a-c)=1
Đặt x=a-b;y=b-c;z=c-a⇒x+y+z=a-b+b-c+c-a=0⇒z=-(x+y)
Có (a-b)^3+(b-c)^3+(c-a)^3=-3
⇒x3+y3+z3=-3
⇒x3+y3-(x+y)3=-3
⇒-3xy(x+y)=-3
⇒-3xyz=-3
⇒xyz=1
⇒(a-b)(b-c)(c-a)=1
Lời giải:
Ta nhớ đến HĐT quen thuộc:
$a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)$
Thay $a+b+c=a^3+b^3+c^3=1$ vô thì:
$1=1^3-3(a+b)(b+c)(c+a)\Rightarrow (a+b)(b+c)(c+a)=0$
$\Rightarrow a+b=0$ hoặc $b+c=0$ hoặc $c+a=0$
Không mất tổng quát, giả sử $a+b=0$. Khi đó: $a=-b$ và $c=1-(a+b)=1$
$A=a^{2021}+b^{2021}+c^{2021}=(-b)^{2021}+b^{2021}+1^{2021}=1$
=a^3+3a^2b+3b^2a+b^3+3b^2c+3c^2b+c^3
(a+b+c)3=( (a+b)+c)3=(a+b)3+c3+3(a+b)c(a+b+c)(a+b+c)3=((a+b)+c)3=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)(ab+c(a+b+c))=a3+b3+c3+3(a+b)(ab+c(a+b+c))
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)(a+c)(b+c)=a3+b3+c3+3(a+b)(a+c)(b+c)