K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

a) Xét tam giác BAC có:

P là trung điểm AB

N là trung điểm BC

=> PN là đường trung bình.

=> PN // AC và PN = 1/2 AC

Mà AM = 1/2 AC => PN = AM

Xét tứ giác AMNP có:

PN // AC

=> Tứ giác AMNP là hình thang.

Mà PN = AM 

=> Hình thang AMNP là hình bình hành.

Ta có: ^A = 90°

=> AMNP là hình chữ nhật.

b) Ta có: AB = 1/2 AC

Mà AM = 1/2AC

=> AB = AM

Mà PN = AM ( cmt )

=> AB = NP .

c) Xét tam giác CBQ vuông ở B có:

^C + ^BQC = 90°         (1)

Xét tam giác BAQ vuông ở A có:

^QBA + ^BQC = 90°      (2)

Từ (1) và (2) => ^C = ^QBA 

Lại có: AB = AM ( cmt )

Mà AM = MC

=> AB = MC

Xét tam giác ABQ và tam giác MCN có:

^BAQ = ^CMN ( = 90° )

AB = MC ( cmt )

^C = ^QBA ( cmt )

=> Tam giác ABQ = tam giác MCN ( g.c.g )

=> NC = QB

Mà BN = NC ( Do N là trung điểm BC )

=> QB = BN 

=> Tam giác BQN cân tại B

3 tháng 3 2020

A B C H K E N M a, ^BAC + ^BAK = 180 (kề bù)

^BAC = 135 (gt)

=> ^BAK = 45

xét ΔAKB có : ^AKB = 90

=> ΔAKB vuông cân  (dấu hiệu)

b, ^KBC = 90 - ^KCB 

^CAH = 90 - ^ACH 

=> ^CAH = ^ABK 

^CAH = ^KAE (đối đỉnh)

=> ^ABK = ^KAE 

xét ΔAKE và ΔBKC có : ^CKB = ^AKE = 90

AK = KB do ΔAKB cân tại K (câu a)

=> ΔAKE = ΔBKC (cgv-gnk)

=> AE = BC (định nghĩa)

c, kẻ MK

xét ΔMNE và ΔMNK có : MN chung

^MNE = ^MNK = 90 

NE = NK do N là trung điểm của EK (Gt)

=> ΔMNE = ΔMNK (2cgv)

=> MN = MK (định nghĩa)                                            (1)

      ^EMN = ^KMN (định nghĩa)                                     (2)

MN ⊥ BE ; CK ⊥ BE => MN // CK (định lí)

=> ^EMN = MCK (đồng vị)

     ^NMK = ^MKC (so le trong)

và (2)

=> ^MCK = ^MKC 

=> ΔMKC cân tại M (dấu hiệu)

=> MK = MC (định nghĩa)   và (1)

=> ME = MC mà M nằm giữa C và E

=> M là trung điểm của EC

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

23 tháng 8 2018

a) Chứng minh được ADCI là hình thoi.

b) Gọi AI Ç BN = G Þ là trọng tâm DABC.

Ta chứng minh DK = GI, lại có   D C = A I ⇒ D K D C = G I A I = 1 3

c) SADCI = 2SACI = SABC = 96cm2

28 tháng 9 2020

a) ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác => MN // BC

Tứ giác MNCB có MN // BC nên là hình thang

b) Xét ∆EQN và ∆KQC có:

     ^ENQ = ^KCQ (BN//CK, so le trong)

     QN = QC (gt)

     ^EQN = ^KQC (đối đỉnh)

Do đó ∆EQN = ∆KQC (g.c.g)

=> EN = KC ( hai cạnh tương ứng)                  (1)

∆NBC có Q là trung điểm của NC và QE // BC nên E là trung điểm của BN => EN = BE              (2)

Từ (1) và (2) suy ra KC = BE

Tứ giác EKCB có KC = BE và KC // BE nên là hình bình hành => EK = BC (đpcm)

c) EF = EQ - FQ = 1/2BC - 1/2MN = 1/2BC - 1/4BC = 1/4BC (đpcm)

d) Gọi J là trung điểm của BC 

Ta có EJ là đường trung bình của ∆NBC nên EJ // NC mà FI⊥NC nên FI⊥EJ

Tương tự suy ra EI⊥FJ suy ra I là trực tâm của ∆EFJ => JI⊥EF

Mà dễ thấy EF // BC nên IJ⊥BC

∆BIC có IJ vừa là đường cao vừa là trung tuyến nên là tam giác cân (đpcm)

28 tháng 9 2020

a) Do M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác ABC.

=> MN //BC

Tứ giác MNCB có MNBC nên MNCB là hình thang.

b) Xét tứ giác EKCB có EK//BC, BE//CK

=> EKCB là hình bình hành

=> EK = BC (đpcm)

9 tháng 1 2023

a) Xét tam giác ABC có : BN = CN

                                        AP = PC

suy ra : NP là đường trung bình của tam giác ABC

suy ra : NP song song với AB và NP = AB/2

Xét tam giác ABC có : AM = BM ; BN = CN

suy ra MN là đường trung bình của tam giác ABC

suy ra MN song song với AC và MN = AC/2

Xét tứ giác AMNP có : MN song song với AP ( MN song song AC )

                                    NP song song với MA ( NP song song AB )

suy ra : tứ giác AMNP là hbh

mà góc BAC = 90 độ

suy ra : hbh AMNP là hcn

b) Ta có : công thức tính diện tích hcn là : a.b ( trong đó a,b là chiều dài hai cạnh kề nhau của hcn )

suy ra : công thức tính diện tích hcn AMNP là :

    SAMNP = MN.NP

Ta có : MN = AC/2

mà AC = 8

suy ra : MN = 8/2 = 4cm

Ta có : NP = AB/2

mà AB = 6

suy ra : NP = 6/2 = 3cm

suy ra : diện tích hcn AMNP = 4.3 = 12 (cm2)

c) phần c hình như sai rồi á bạn

d) Ta có : AMNP là hcn ( đã C/M ở phần a )

Để hcn AMNP là hình vuông

khi và chỉ khi : MA = MN 

mà MA = BA/2

      MN = CA/2

suy ra : để hcn nhật AMNP là hv thì AB = AC