Cho tam giác ABC vuông tại A có AC=2AB. Gọi M,N,P lần lượt là trung điểm của AC,BC,AB
a) Tứ giác AMNP là hình gì ?
b) CM: AB=NP
c)Qua B kẻ đường thẳng vuông góc với BC cắt tia CA tại Q. CM tam giác BQN vuông cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ^BAC + ^BAK = 180 (kề bù)
^BAC = 135 (gt)
=> ^BAK = 45
xét ΔAKB có : ^AKB = 90
=> ΔAKB vuông cân (dấu hiệu)
b, ^KBC = 90 - ^KCB
^CAH = 90 - ^ACH
=> ^CAH = ^ABK
^CAH = ^KAE (đối đỉnh)
=> ^ABK = ^KAE
xét ΔAKE và ΔBKC có : ^CKB = ^AKE = 90
AK = KB do ΔAKB cân tại K (câu a)
=> ΔAKE = ΔBKC (cgv-gnk)
=> AE = BC (định nghĩa)
c, kẻ MK
xét ΔMNE và ΔMNK có : MN chung
^MNE = ^MNK = 90
NE = NK do N là trung điểm của EK (Gt)
=> ΔMNE = ΔMNK (2cgv)
=> MN = MK (định nghĩa) (1)
^EMN = ^KMN (định nghĩa) (2)
MN ⊥ BE ; CK ⊥ BE => MN // CK (định lí)
=> ^EMN = MCK (đồng vị)
^NMK = ^MKC (so le trong)
và (2)
=> ^MCK = ^MKC
=> ΔMKC cân tại M (dấu hiệu)
=> MK = MC (định nghĩa) và (1)
=> ME = MC mà M nằm giữa C và E
=> M là trung điểm của EC
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
a) Chứng minh được ADCI là hình thoi.
b) Gọi AI Ç BN = G Þ là trọng tâm DABC.
Ta chứng minh DK = GI, lại có D C = A I ⇒ D K D C = G I A I = 1 3
c) SADCI = 2SACI = SABC = 96cm2
a) ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác => MN // BC
Tứ giác MNCB có MN // BC nên là hình thang
b) Xét ∆EQN và ∆KQC có:
^ENQ = ^KCQ (BN//CK, so le trong)
QN = QC (gt)
^EQN = ^KQC (đối đỉnh)
Do đó ∆EQN = ∆KQC (g.c.g)
=> EN = KC ( hai cạnh tương ứng) (1)
∆NBC có Q là trung điểm của NC và QE // BC nên E là trung điểm của BN => EN = BE (2)
Từ (1) và (2) suy ra KC = BE
Tứ giác EKCB có KC = BE và KC // BE nên là hình bình hành => EK = BC (đpcm)
c) EF = EQ - FQ = 1/2BC - 1/2MN = 1/2BC - 1/4BC = 1/4BC (đpcm)
d) Gọi J là trung điểm của BC
Ta có EJ là đường trung bình của ∆NBC nên EJ // NC mà FI⊥NC nên FI⊥EJ
Tương tự suy ra EI⊥FJ suy ra I là trực tâm của ∆EFJ => JI⊥EF
Mà dễ thấy EF // BC nên IJ⊥BC
∆BIC có IJ vừa là đường cao vừa là trung tuyến nên là tam giác cân (đpcm)
a) Do M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác ABC.
=> MN //BC
Tứ giác MNCB có MNBC nên MNCB là hình thang.
b) Xét tứ giác EKCB có EK//BC, BE//CK
=> EKCB là hình bình hành
=> EK = BC (đpcm)
a) Xét tam giác ABC có : BN = CN
AP = PC
suy ra : NP là đường trung bình của tam giác ABC
suy ra : NP song song với AB và NP = AB/2
Xét tam giác ABC có : AM = BM ; BN = CN
suy ra MN là đường trung bình của tam giác ABC
suy ra MN song song với AC và MN = AC/2
Xét tứ giác AMNP có : MN song song với AP ( MN song song AC )
NP song song với MA ( NP song song AB )
suy ra : tứ giác AMNP là hbh
mà góc BAC = 90 độ
suy ra : hbh AMNP là hcn
b) Ta có : công thức tính diện tích hcn là : a.b ( trong đó a,b là chiều dài hai cạnh kề nhau của hcn )
suy ra : công thức tính diện tích hcn AMNP là :
SAMNP = MN.NP
Ta có : MN = AC/2
mà AC = 8
suy ra : MN = 8/2 = 4cm
Ta có : NP = AB/2
mà AB = 6
suy ra : NP = 6/2 = 3cm
suy ra : diện tích hcn AMNP = 4.3 = 12 (cm2)
c) phần c hình như sai rồi á bạn
d) Ta có : AMNP là hcn ( đã C/M ở phần a )
Để hcn AMNP là hình vuông
khi và chỉ khi : MA = MN
mà MA = BA/2
MN = CA/2
suy ra : để hcn nhật AMNP là hv thì AB = AC
Bài làm
a) Xét tam giác BAC có:
P là trung điểm AB
N là trung điểm BC
=> PN là đường trung bình.
=> PN // AC và PN = 1/2 AC
Mà AM = 1/2 AC => PN = AM
Xét tứ giác AMNP có:
PN // AC
=> Tứ giác AMNP là hình thang.
Mà PN = AM
=> Hình thang AMNP là hình bình hành.
Ta có: ^A = 90°
=> AMNP là hình chữ nhật.
b) Ta có: AB = 1/2 AC
Mà AM = 1/2AC
=> AB = AM
Mà PN = AM ( cmt )
=> AB = NP .
c) Xét tam giác CBQ vuông ở B có:
^C + ^BQC = 90° (1)
Xét tam giác BAQ vuông ở A có:
^QBA + ^BQC = 90° (2)
Từ (1) và (2) => ^C = ^QBA
Lại có: AB = AM ( cmt )
Mà AM = MC
=> AB = MC
Xét tam giác ABQ và tam giác MCN có:
^BAQ = ^CMN ( = 90° )
AB = MC ( cmt )
^C = ^QBA ( cmt )
=> Tam giác ABQ = tam giác MCN ( g.c.g )
=> NC = QB
Mà BN = NC ( Do N là trung điểm BC )
=> QB = BN
=> Tam giác BQN cân tại B