K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

A A A B B B C C C D D D E E E M M M N N N

a) Xét \(\Delta ABE\)và \(\Delta ACD\)có :

AB = AC(gt)

\(\widehat{A}\)chung

AE = AD(gt)

=> \(\Delta ABE=\Delta ACD\left(c-g-c\right)\)

=> BE = CD(hai cạnh tương ứng)

b) Ta có : \(\Delta ABE=\Delta ACD\left(c-g-c\right)\)

=> \(\widehat{ABE}=\widehat{ACD}\)(hai góc tương ứng)

Mà \(\widehat{ABE}\)và \(\widehat{ACD}\)là hai góc so le trong

=> BE//CD

c) Vì M là trung điểm của BE nên \(ME=EB=\frac{MB}{2}\)(1)

Vì N là trung điểm của CD nên \(DN=DC=\frac{NC}{2}\)(2)

Từ (1) và (2) => \(\frac{MB}{2}=\frac{NC}{2}\)hay MB = NC

Xét \(\Delta AMB\)và \(\Delta ANC\)có :

MB = NC(cmt)

\(\widehat{A}\)chung

AB = AC(cmt câu a)

=> \(\Delta AMB=\Delta ANC\)(c-g-c)

=> AM = AN

=> A là trung điểm của MN

15 tháng 12 2021

bạn tham khảo nhé                                                                                              

31 tháng 12 2021

a) Xét tam giác BEA và tam giác DCA có:

+ AE = AC (gt).

+ AB = AD (gt).

\(\widehat{BAE}=\widehat{DAC}\) (2 góc đối đỉnh).

\(\Rightarrow\) Tam giác BEA = Tam giác DCA (c - g - c).

b) Tam giác BEA = Tam giác DCA (cmt).

\(\Rightarrow\) \(\widehat{ABE}=\widehat{ADC}\) (2 góc tương ứng).

Mà 2 góc này ở vị trí so le trong.

\(\Rightarrow\) BE // CD (dhnb).

c) Xét tam giác BEC có:

+ A là trung điểm của EC (AE = AC).

+ M là trung điểm của BE (gt).

\(\Rightarrow\) AM là đường trung bình của tam giác BEC.

\(\Rightarrow\) AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình). \(\left(1\right)\)

Xét tam giác CDB có:

+ A là trung điểm của BD (AD = AB).

+ N là trung điểm của CD (gt).

\(\Rightarrow\) AN là đường trung bình của tam giác CDB.

\(\Rightarrow\) AN = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình). \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) \(\Rightarrow\) AM = AN (cùng = \(\dfrac{1}{2}\) BC).

 

23 tháng 12 2021

b: Xét tứ giác BEDC có

A là trung điểm của BD

A là trung điểm của EC

Do đó: BEDC là hình bình hành

Suy ra: BE//CD

a) Xét \(\Delta EAB\)\(\Delta DAC\) có :

\(AE=AC\) ( gt)

\(AB=AD\left(gt\right)\)

\(\widehat{EAB}=\widehat{DAC}\) ( đối đỉnh )

Do đó : \(\Delta EAB=\Delta CAD\) ( c-g-c)

\(\Rightarrow BE=CD\) ( cạnh tương ứng )

\(\Rightarrow\) \(\widehat{E_1}=\widehat{C_1}\) ( hai góc tương ứng )

b) Ta có : \(ME=\dfrac{1}{2}BE\) ( M là trung điểm của BE )

\(NC=\dfrac{1}{2}CD\) ( N là trung điểm của CD )

mà BE = CD ( cmt )

\(\Rightarrow ME=NC\)

Xét \(\Delta EAM\)\(\Delta NAC\) có :
\(ME=NC\) (cmt)

\(AE=AC\) ( gt )

\(\widehat{E_1}=\widehat{C_1}\)

Do đó \(\Delta EAM=\Delta CAN\) ( c-g-c)

\(\Rightarrow\widehat{EAM}=\widehat{NAC}\) ( hai góc tương ứng )

Ta có : \(\widehat{EAN}+\widehat{NAC}=180^o\) ( hai góc kề bù )

hay \(\widehat{EAN}+\widehat{EAM}=180^o\) ( vì \(\widehat{EAM}=\widehat{NAC}\))

\(\Rightarrow\) ba điểm A , N , M thằng hàng (đpcm)

ABCDEMN11

22 tháng 11 2017

E D A B C M N

a, Xét t/g ABE và t/g ADC có:

AB = AD (gt)

AE = AC (gt)

góc BAE = góc DAC (đối đỉnh)

Do đó t/g ABE = t/g ADC (c.g.c)

=> BE = CD (2 cạnh t/ứ)

b, Vì t/g ABE = t/g ADC => góc ABE = góc ADC (2 góc t/ứ)

Mà 2 góc này ở vị trí so le trong nên BE // CD

c, Vì BE = CD => \(\frac{BE}{2}=\frac{CD}{2}\) => BM = DN

Xét t/g AMB và t/g AND có:

BM = DN (cmt)

AB = AD (gt)

góc ABE = góc ADC (cmt)

Do đó t/g AMB = t/g AND (c.g.c)

=> AM = AN (2 cạnh t/ứ)