SO SÁNH
a,\(\sqrt{17}+\sqrt{26}+1\)VÀ \(\sqrt{99}\)
b,\(\sqrt{625}-\frac{1}{\sqrt{5}}\) VỚI \(\sqrt{576}-\frac{1}{\sqrt{6}}+1\)
mong các bạn giúp mình hôm nay càng sớm tốt tốt nhất là trước 7h mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có\(\sqrt{625}\)=25
\(\sqrt{576}\)=24
\(\Rightarrow\)24-1/\(\sqrt{6}\)+1
\(\Rightarrow\)24+-1/\(\sqrt{6}\)
\(\Rightarrow\)25-1/\(\sqrt{6}\)
\(\Rightarrow\)A<B
Bài 2 :
Giả sử \(a=\sqrt{3}\)là số hữu tỉ
Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )
Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)
Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)
\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)
=> m có dạng \(3k\)
Thay m vào (*) ta có : \(9k^2=3n^2\)
\(\Leftrightarrow3k^2=n^2\)
\(\Leftrightarrow n=\sqrt{3}k\)
Vì k là số nguyên => n không là số nguyên
=> điều giả sử là sai
=> \(\sqrt{3}\)là số vô tỉ
\(A=\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}\)
\(B=\sqrt{576}-\frac{1}{\sqrt{6}}+1=24-\frac{1}{\sqrt{6}}+1=25-\frac{1}{\sqrt{6}}\)
\(A< B\)
√625=25
Ta co √576=24
=> 24-1/√6+1
=> 24+-1/√6+1
=> 25+-1/√6
=> 25-1/√6
=> A<B
Ta có : căn bậc hai của 625 =25
căn bậc hai của 576 =24 cộng 1 =25
→ căn bậc hai của 625 = căn bậc hai của 576 cộng 1 (1)
5< 6 → căn bậc 2 của 5 < của 6 → 1/ căn bậc 2 của 5 > 1/ căn bậc 2 của 6 (2)
Từ (1) và (2) → A< B
Nhớ tick nha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1/√1 > 1/10
1/√2 > 1/10
1/√3 > 1/10
....................
1/√99 > 1/10
1/√100 = 1/10
Cộng từng vế ta có:
1/√1 + 1/√2 + 1/√3 + ... + 1/√100 >100.1/0 = 10 (Đpcm)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
a)Ta có:\(\sqrt{17}>\sqrt{16}\)
\(\sqrt{26}>\sqrt{25}\)
\(\implies\) \(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}\)
\(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
Mà \(\sqrt{100}=10\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{100}\)
Mà \(\sqrt{100}>\sqrt{99}\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
b)Ta có:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=100.\frac{1}{\sqrt{100}}\)
\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{10}.100=10\)
\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>10\left(đpcm\right)\)
a)Ta có : \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)(đpcm)
b) Ta có : \(\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}>25-\frac{1}{\sqrt{6}}=24-\frac{1}{\sqrt{6}}+1=\sqrt{576}-\frac{1}{\sqrt{6}}+1\)
\(\Rightarrow\sqrt{625}-\frac{1}{\sqrt{5}}>\sqrt{576}-\frac{1}{\sqrt{6}}+1\)(đpcm)