Cho hình bình hành ABCD có đường chéo AC lớn hơn BD. Từ C hạ các đường vuông góc CE, CF lần lượt xuống các tia AB và AD. Chứng minh rằng:AB.AE+AD.FA=AC^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Đình Kim Thanh - Toán lớp 8 - Học toán với OnlineMath
Em xem link bài làm nhé!
a) tg ABG ~ tg ACE vì là 2 tg vuông có chung góc nhọn
b) Từ a) => AB/AC=AG/AE=>AB.AE=AC.AG
Ta có tg ACF~ tg CBG (^C=^A,^F=^G=90)
=>AF/CG=AC/CB =>AF.CB=AC.CG
Mà CB=AD =>AF.AD=AC.CG
=>AB.AE+AD.AF=AC.AG+AC.CG=AC^2
c) Có AB.AE=AC.AG=AC.2CG=2.AD.AF
=> dpcm
Dựng BG ⊥ AC.
Xét ∆ BGA và ∆ CEA, ta có:
ˆBGA=ˆCEA=90∘BGA^=CEA^=90∘
ˆAA^ chung
Suy ra: ∆ BGA đồng dạng ∆ CEA (g.g)
Suy ra: ABAC=AGAEABAC=AGAE
Suy ra: AB.AE = AC.AG (1)
Xét ∆ BGC và ∆ CFA, ta có:
ˆBGC=ˆCFA=90∘;BGC^=CFA^=90∘
ˆBCG=ˆCAF;BCG^=CAF^ (so le trong vì AD // BC)
Suy ra: ∆ BGC đồng dạng ∆ CFA (g.g)
Suy ra: AFCG=ACBC⇒BC.AF=AC.CGAFCG=ACBC⇒BC.AF=AC.CG
Mà BC = AD (tính chất hình bình hành )
Suy ra: AD.AF = AC.CG (2)
Cộng từng vế của đẳng thức (1) và (2) ta có:
AB.AE + AD.AF = AC.AG + AC.CG
⇒AB.AE+AD.AF=AC(AG+CG)⇒AB.AE+AD.AF=AC(AG+CG)
Mà AG+CG=ACAG+CG=AC nên AB.AE+AD.AF=AC2
Dựng BG ⊥ AC.
Xét ΔBGA và ΔCEA, ta có:
∠ (BGA) = ∠ (CEA) = 90 0
∠ A chung
⇒ △ BGA đồng dạng △ CEA(g.g)
Suy ra:
AB.AE = AC.AG (1)
Xét △ BGC và △ CFA, ta có:
∠ (BGC) = ∠ (CFA) = 90 0
∠ (BCG) = ∠ (CAF) (so le trong vì AD //BC)
△ BGC đồng dạng △ CFA (g.g)
Suy ra: ⇒ BC.AF = AC.CG
Mà BC = AD (tính chất hình bình hành)
Suy ra: AD.AF = AC.CG (2)
Cộng từng vế đẳng thức (1) và (2) ta có:
AB.AE + AD.AF = AC.AG + AC.CG
AB.AE + AD.AF= AC(AG + CG)
Mà AG + CG = AC nên AB.AE + AD.AF = A C 2
Hạ 2 đường cao từ B, D xuống AC cắt lần lượt ở K, H
Ta có : tam giác BKC =tam giác DHA (cạnh huyền góc nhọn)
=> CK = AH (1)
Mà tam giác AKB đồng dạng tam giác AEC ( góc góc )
=> AB * AE = AC * AK (2)
Chứng minh tương tự: AD * AF =AH * AC (3)
(2) + (3) <=> AB * AE + AD * AF = AC * AK + AC * AH
= AC ( AH + AK) (4)
Thế (1) vào (4)
=> AB * AE + AD * AF = AC * AC = AC2 (đpcm)