Bài 1. Vẽ hình theo diễn đạt sau
· Cho tam giác ABC có C = 300 .
· Gọi I là trung điểm của BC .
· Từ I kẻ IH // AB (H thuộc AC).
· Vẽ đường thẳng m là trung trực của AB.
· Chứng minh m vuông góc với HI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔABC có
I là trung điểm của BC
IH//AC
Do đó: H là trung điểm của AB
Xét tứ giác AIBQ có
H là trung điểm của đường chéo AB
H là trung điểm của đường chéo IQ
Do đó: AIBQ là hình bình hành
mà AB\(\perp\)IQ
nên AIBQ là hình thoi
a: Xet ΔADB vuông tại D va ΔAEC vuông tại E có
góc BAD chung
=>ΔADB đồg dạng với ΔAEC
=>AD/AE=AB/AC
=>AD/AB=AE/AC và AD*AC=AE*AB
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
Trong tam giác ABC có:
∠A + ∠(ABC) + ∠(ACB) = 180o ⇒ ∠(ABC) + ∠(ACB) = 180o - 80o = 100o
Mà BI và CI lâ các tia phân giác nên
∠(ABC) + ∠(ACB) = 2.∠(IBC) + 2.∠(ICB) = 2 (∠(IBC) + ∠(ICB) )
Suy ra ∠(IBC) + ∠(ICB) = 50o
Mà ∠(IBC) + ∠(ICB) + ∠(BIC) = 180o ⇒ ∠(BIC) = 130o.