giup mk 2n-4 chia het cho n+2 nhanh len nhe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em rất muốn giúp chị nhưng em chỉ mới lớp 5 nên không biết toán lớp 6 có gì chị cứ nhắn trang toán cho em chắc em sẽ giải được nếu biết là trang mấy
2n+3 chi hết cho n+1
=>2n+2+1 chia hết cho n+1
Vì 2n+2 chia hết cho n+1
=> 1 chia hết cho n+1
=> n+1 thuộc Ư(1)
n+1 | n |
1 | 0 |
-1 | -2 |
KL: n=0 hoặc n= -2
4n+8 chia hết cho 2n+2
=> 4n+4+4 chia hết cho 2n+2
Vì 4n+4 chia hết cho 2n+2
=> 4 chia hết cho 2n+2
=> 2n+2 thuộc Ư(4)
2n+2 | n |
1 | KTM |
-1 | KTM |
2 | 0 |
-2 | -2 |
4 | 1 |
-4 | -3 |
KL: n thuộc..............
Ta có
n+6 chia hết cho n-3
=> n-3 +9 chia hết cho n-3
Vì n-3 chia hết cho n-3
=> 9 chia hết cho n-3
Xét các ước của 9 để tìm đk n là số tự nhiên
Ta có:
2n+8 chia hết cho n+2
=>2(n+2)+4 chia hết cho n+2
Các phần sau làm tương tự câu trên
Ta có
3n+5 chia hết cho -2n+1
=> 3n+5 chia hết cho 2n-1
=> 6n+10 chia hết cho 2n-1
=>3(2n-1)+13 chia hết cho 2n-1
Phần sau làm tương tự nhé bạn
6n-5 chia hết cho 2n+3
=> 6n+9-14 chia hết cho 2n+3
=> 3(2n+3)-14 chia hết cho 2n+3
=> 14 chia hết cho 2n+3
=> 2n+3 là ước của 14
Mà 2n+3 là số nguyên lẻ
=> 2n+3 thuộc {-1;1}
=> n thuộc {-2;-1}
A. 5n chia hết cho n vậy 27-5n chia hết cho n khi 27 chia hết cho n. Ước của 27 là 27, 9,3,1. n<6 vậy n=3,1
B. n+8 chia hết n+3 vậy ((n+8)-(n+3)) chia hết cho n+3 vậy 5 chia hết cho n+3. Ước 5 là 5, 1
N+3 | 5 | 1 |
N | 2 | ko có |
Vậy n= 2
C. 2n+3 chia hết n-2
2*(n-2) chia hết cho n-2, 2*(n-2) = 2n - 4
Vậy (2n+3) - (2n-4) chia hết cho n-2
Vậy 7 chia hết cho n-2
N-2 = 7 thì n = 9
N-2 = 1 thì n = 3
D. Tuong tu c
\(\left(3x\right)⋮2\)
\(\Leftrightarrow3x\)là \(BC\left(2\right)\)
mà \(BC\left(2\right)=\left\{0;2;4;6;8;...\right\}\)
biết \(x\le6\)nên \(3x\le6\)
\(\Rightarrow x\le2\)
\(\Rightarrow x\in\left\{0;1;2\right\}\)
vậy \(x\in\left\{0;1;2\right\}\)
a) 2n + 1 \(⋮\)n - 5
=> 2.( n - 5 ) + 1 + 10 \(⋮\)n - 5
=> 2.( n - 5 ) + 11 \(⋮\)n - 5
=> 11 \(⋮\)n - 5 [ vì 2.( n - 5 ) \(⋮\)n - 5 ]
=> n - 5 \(\in\)Ư(11) = { -11 ;- 1;1 ; 11 }
=> n \(\in\){ -6; 4;6;16 }
Vậy: n \(\in\){ -6; 4;6;16 }
b) n2 + 3n - 13 \(⋮\)n + 3
=> n.n + 3n - 13 \(⋮\)n + 3
=> n.( n+ 3 ) + 3 . ( n + 3 ) - 13 - 3n - 9 \(⋮\)n + 3
=> 13 - 3n - 9 \(⋮\)n + 3 [ vì n.( n + 3 ) và 3.( n + 3 ) \(⋮\)n + 3 ]
=> 3n - 22 \(⋮\)n + 3
=>3.( n - 3 ) - 22 - 9 \(⋮\)n + 3
=> 3.( n - 3 ) - 31 \(⋮\)n + 3
=> 31 \(⋮\)n + 3 [ vì 3. ( n - 3 ) \(⋮\)n + 3 ]
=> n + 3 \(\in\)Ư ( 31 ) = { -31 ; -1 ; 1 ; 31 }
=> n \(\in\){ -34 ; -4; -2 ; 28 }
Vậy: n \(\in\){ -34 ; -4; -2 ; 28 }
c) n2 + 3 \(⋮\) n - 1
=> n.n + 3 \(⋮\) n - 1
=> n.( n - 1 ) + 3 - n \(⋮\) n - 1
=> 3 - n \(⋮\) n - 1 [ vì n.( n - 1 ) \(⋮\) n - 1 ]
=> n - 3 \(⋮\) n - 1
=> ( n - 1 ) - 2 \(⋮\) n - 1
=> n - 1 \(\in\)Ư( 2 )= { -2 ; - 1; 1 ; 2 }
=> n \(\in\){ -1 ; 0 ;2 ;3 }
vậy: n \(\in\){ -1 ; 0 ;2 ;3 }
a) Ta có :
\(n+5⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Leftrightarrow3⋮n+2\)
Vì \(n\in N\Leftrightarrow n+2\in N;n+2\inƯ\left(3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+2=1\Leftrightarrow n=-1\left(loại\right)\\n+1=3\Leftrightarrow n=2\left(tm\right)\end{matrix}\right.\)
Vậy ....
b) Ta có :
\(4n+9⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n+9⋮n+1\\4n+4⋮n+1\end{matrix}\right.\)
\(\Leftrightarrow5⋮n+1\)
Vì \(n\in N\Leftrightarrow n+1\in N;n+1\inƯ\left(5\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1=1\Leftrightarrow n=0\\n+1=5\Leftrightarrow n=4\end{matrix}\right.\)
Vậy ....
Ta có:
\(\left(2n-4\right)⋮\left(n+2\right)\)
\(\Rightarrow\left(2n+4-8\right)⋮\left(n+2\right)\)
\(\Rightarrow8⋮\left(n+2\right)\)
Ta có bảng sau: