K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2020

Ta có: /-2/300=2300                                              (1)

/-4/150=4150=(22)150=22.150=2300                 (2)

Từ (1) và (2) => /-2/300=/-4/150

15 tháng 3 2020

Bn ơi, đặt giá trị tuyệt đối ở đâu vậy bn?

19 tháng 8 2021

a, Ta có:

 \(\left|-2\right|^{300}=2^{300}\)    (1)

\(\left|-4\right|^{150}=4^{150}=\left(2^2\right)^{150}=2^{300}\)   (2) 

 Từ (1) và (2) \(\Rightarrow\) \(\left|-2\right|^{300}=\left|-4\right|^{150}\)

a: \(\left|-2\right|^{300}=2^{300}\)

\(\left|-4\right|^{150}=4^{150}=2^{300}\)

Do đó: \(\left|-2\right|^{300}=\left|-4\right|^{150}\)

b: \(\left|-2\right|^{300}=\left|-2\right|^{300}\)

22 tháng 12 2015

a,>

b,=

c,>

Chắc đấy! Tick nhé!

18 tháng 4 2016

\(a.\)

Ta sẽ biến đổi biểu thức  \(B\)  quy về dạng có thể dùng được hằng đẳng thức  \(\left(x-y\right)\left(x+y\right)=x^2-y^2\), khi đó:

\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)

Vì  \(2^{16}>2^{26}-1\)  nên  \(2^{16}>\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

Vậy,  \(A>B\)

Tương tự với câu  \(b\)  kết hợp với phương pháp tách hạng tử, khi đó xuất hiện hằng đẳng thức mới và dễ dàng đơn giản hóa biểu thức \(A\). Ta có:

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)=\frac{1}{2}\left(3^{128}-1\right)\)

Mặt khác, do  \(\frac{1}{2}<1\)  nên   \(\frac{1}{2}\left(3^{128}-1\right)<3^{128}-1\)

Vậy,  \(B>A\)

7 tháng 11 2015

\(\left(\frac{1}{3}\right)^{500}=\left(\frac{1}{3}^5\right)^{100}=\frac{1}{243}^{100}\)

\(\left(\frac{1}{5}\right)^{300}=\left(\frac{1}{5}^3\right)^{100}=\frac{1}{125}^{100}\)

Vì \(\frac{1}{243}<\frac{1}{125}=>\frac{1}{243}^{100}<\frac{1}{125}^{100}=>\left(\frac{1}{3}\right)^{500}<\left(\frac{1}{5}\right)^{300}\)

7 tháng 11 2015

3-500=(35)-100= 243-100

5-300= (53)-100 =125-100

243>125 =>    243-100<125-100

Hay 3-500 <5-300

HQ
Hà Quang Minh
Giáo viên
9 tháng 10 2023

\(\begin{array}{l}\left[ {\left( { - 3} \right) + 4} \right] + 2 = \left( {4 - 3} \right) + 2\\ = 1 + 2 = 3\end{array}\)

\(\begin{array}{l}\left( { - 3} \right) + \left( {4 + 2} \right) = \left( { - 3} \right) + 6\\ = 6 - 3 = 3\end{array}\)

\(\begin{array}{l}\left[ {\left( { - 3} \right) + 2} \right] + 4 =  - \left( {3 - 2} \right) + 4\\ =  - 1 + 4 = 3\end{array}\)

2 tháng 2 2016

vong 13 dung ko, ket qua la >

5 tháng 11 2015

x<y nhé bạn :)