So sánh
\(\left|-2\right|^{300}\)và \(\left|-4\right|^{150}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:
\(\left|-2\right|^{300}=2^{300}\) (1)
\(\left|-4\right|^{150}=4^{150}=\left(2^2\right)^{150}=2^{300}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\left|-2\right|^{300}=\left|-4\right|^{150}\)
a: \(\left|-2\right|^{300}=2^{300}\)
\(\left|-4\right|^{150}=4^{150}=2^{300}\)
Do đó: \(\left|-2\right|^{300}=\left|-4\right|^{150}\)
b: \(\left|-2\right|^{300}=\left|-2\right|^{300}\)
\(a.\)
Ta sẽ biến đổi biểu thức \(B\) quy về dạng có thể dùng được hằng đẳng thức \(\left(x-y\right)\left(x+y\right)=x^2-y^2\), khi đó:
\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)
Vì \(2^{16}>2^{26}-1\) nên \(2^{16}>\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
Vậy, \(A>B\)
Tương tự với câu \(b\) kết hợp với phương pháp tách hạng tử, khi đó xuất hiện hằng đẳng thức mới và dễ dàng đơn giản hóa biểu thức \(A\). Ta có:
\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)=\frac{1}{2}\left(3^{128}-1\right)\)
Mặt khác, do \(\frac{1}{2}<1\) nên \(\frac{1}{2}\left(3^{128}-1\right)<3^{128}-1\)
Vậy, \(B>A\)
\(\left(\frac{1}{3}\right)^{500}=\left(\frac{1}{3}^5\right)^{100}=\frac{1}{243}^{100}\)
\(\left(\frac{1}{5}\right)^{300}=\left(\frac{1}{5}^3\right)^{100}=\frac{1}{125}^{100}\)
Vì \(\frac{1}{243}<\frac{1}{125}=>\frac{1}{243}^{100}<\frac{1}{125}^{100}=>\left(\frac{1}{3}\right)^{500}<\left(\frac{1}{5}\right)^{300}\)
3-500=(35)-100= 243-100
5-300= (53)-100 =125-100
243>125 => 243-100<125-100
Hay 3-500 <5-300
\(\begin{array}{l}\left[ {\left( { - 3} \right) + 4} \right] + 2 = \left( {4 - 3} \right) + 2\\ = 1 + 2 = 3\end{array}\)
\(\begin{array}{l}\left( { - 3} \right) + \left( {4 + 2} \right) = \left( { - 3} \right) + 6\\ = 6 - 3 = 3\end{array}\)
\(\begin{array}{l}\left[ {\left( { - 3} \right) + 2} \right] + 4 = - \left( {3 - 2} \right) + 4\\ = - 1 + 4 = 3\end{array}\)
Ta có: /-2/300=2300 (1)
/-4/150=4150=(22)150=22.150=2300 (2)
Từ (1) và (2) => /-2/300=/-4/150
Bn ơi, đặt giá trị tuyệt đối ở đâu vậy bn?