K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

27 tháng 7 2020

câu 2 mình thiếu thôi ạ

sửa lại : \(\frac{x+2}{x\sqrt{x}+1}+\frac{\sqrt{x}-1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\)

27 tháng 7 2020

bạn biết thì giải hộ mình với ạ

6 tháng 12 2019
https://i.imgur.com/uIbkS6G.jpg
12 tháng 8 2019

bài khá dễ nhưng làm thì mắc công quá

12 tháng 8 2019

a) Rgọn

D= \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

= \(\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x-2}\right)\left(\sqrt{x}-3\right)}\)

=\(\frac{\sqrt{x}-1}{\sqrt{x}-3}\)

b)thay x=\(\frac{1}{3}\)ta dc

\(\frac{\sqrt{\frac{1}{4}}-1}{\sqrt{\frac{1}{4}-3}}\)=\(\frac{\frac{1}{2}-1}{\frac{1}{2}-3}\)=\(\frac{1}{2}\)

c) Để D=2 => \(\frac{\sqrt{x}-1}{\sqrt{x}-3}=2\)

=> 2\(\sqrt{x}-2=\sqrt{x}-3\)

=> \(\sqrt{x}=-1\)

=> x =1

17 tháng 8 2019

Bài 1

1)

Đkxđ \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

Khi đó A=\(\frac{\sqrt{3}-1-1}{\sqrt{3}-1+1}=\frac{\sqrt{3}-2}{\sqrt{3}}\)

2) Đề là \(5-2\sqrt{6}\)sẽ hợp lý hơn nha bn

Đkxđ\(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-\sqrt{2}\ne0\end{matrix}\right.\)

Ta có \(5-2\sqrt{6}=\left(1-\sqrt{6}\right)^2\)

Khi đó

B= \(\frac{1-\sqrt{6}}{1-\sqrt{6}-\sqrt{2}}\)

17 tháng 8 2019

1)

đk: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Rgọn

A=\(\frac{x+12}{x-4}+\frac{1}{\sqrt{x}+2}-\frac{4}{\sqrt{x}-2}\)

= \(\frac{x+12+\sqrt{x}-2-\left(4\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

=\(\frac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

=\(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

=\(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

2)

B=\(\frac{3\sqrt{x}-1}{\sqrt{x}+2}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{10\sqrt{x}}{x-4}\) đk \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

= \(\frac{\left(3\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+10\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

= \(\frac{3x-5\sqrt{x}-2-\left(x+3\sqrt{x}+2\right)+10\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

=\(\frac{3x-5\sqrt{x}-2-x-3\sqrt{x}-2+10\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

=\(\frac{2x+2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

=\(\frac{\left(2x+2\sqrt{x}\right)-\left(4\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

=\(\frac{2\sqrt{x}\left(\sqrt{x}+2\right)-4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

=\(\frac{\left(\sqrt{x}+2\right)2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=2\)

Chúc bn học tốt

Nhớ tích cho mk nhé