tìm x biết \(\left(3.\left|x.\left(-24\right)\right|.7^{2019}\right)=2.7^{2020}.\frac{1}{2020}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ủa bạn j ơi chữ x chành bành ra trên đề kìa mà bạn bảo tìm làm j nữa
đâu có đâu bạn ???
Mình dùng công cụ công thức của hoc24.vn mà
Bạn đợi chút nó sẽ load ra liền
Xét \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3+3x+3-6x+3x^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3x+3x^2}\)
\(=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)
Thay vào ta tính được:
\(A=\left[f\left(\frac{1}{2020}\right)+f\left(\frac{2019}{2020}\right)\right]+...+\left[f\left(\frac{1009}{2020}\right)+f\left(\frac{1011}{2020}\right)\right]+f\left(\frac{1010}{2020}\right)\)
\(A=1+...+1+f\left(\frac{1010}{2020}\right)\) (với 1009 số 1)
\(A=1009+f\left(\frac{1}{2}\right)=1009+\frac{\left(\frac{1}{2}\right)^3}{1-3\cdot\frac{1}{2}+3\cdot\left(\frac{1}{2}\right)^2}\)
\(A=1009+\frac{1}{2}=\frac{2019}{2}\)
Vậy \(A=\frac{2019}{2}\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+2019\right)\left(x+2020\right)}\)
( ĐKXĐ : \(x\ne\left\{0;-1;-2;...;-2019;-2020\right\}\))
\(=\frac{1}{x}-\frac{1}{\left(x+1\right)}+\frac{1}{\left(x+1\right)}-\frac{1}{\left(x+2\right)}+\frac{1}{\left(x+2\right)}-\frac{1}{\left(x+3\right)}+...+\frac{1}{\left(x+2019\right)}-\frac{1}{\left(x+2020\right)}\)
\(=\frac{1}{x}-\frac{1}{x+2020}\)
\(=\frac{x+2020}{x\left(x+2020\right)}-\frac{x}{x\left(x+2020\right)}\)
\(=\frac{x+2020-x}{x\left(x+2020\right)}\)
\(=\frac{2020}{x\left(x+2020\right)}\)
Bài giải
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2019\right)\left(x+2020\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2019}-\frac{1}{x+2020}\)
\(=\frac{1}{x}-\frac{1}{x+2020}\)
\(=\frac{x+2020}{x\left(x+2020\right)}-\frac{x}{x+2020}=\frac{2020}{x\left(x+2020\right)}\)
Ta có: |x - 2019| ≥ 0 => |x - 2019|2019 ≥ 0
|x - 2020| ≥ 0 => |x - 2020|2020 ≥ 0
+) TH1: \(\hept{\begin{cases}\left|x-2019\right|^{2019}=0\\\left|x-2020\right|^{2020}=1\end{cases}\Rightarrow}\hept{\begin{cases}\left|x-2019\right|=0\\\left|x-2020\right|=1\end{cases}}\Rightarrow\hept{\begin{cases}x-2019=0\\\left|x-2020\right|=1\end{cases}\Rightarrow}\hept{\begin{cases}x=2019\\\left|x-2020\right|=1\end{cases}}\)
Giải: |x - 2020| = 1
TH1: x - 2020 = 1 => x = 2021
TH2: x - 2020 = -1 => x = 2019
Vì 2021 ≠ 2019
=> x = 2019
+) TH2: \(\hept{\begin{cases}\left|x-2019\right|^{2019}=1\\\left|x-2020\right|^{2020}=0\end{cases}\Rightarrow}\hept{\begin{cases}\left|x-2019\right|=1\\\left|x-2020\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2019\right|=1\\x-2020=0\end{cases}\Rightarrow}\hept{\begin{cases}\left|x-2019\right|=1\\x=2020\end{cases}}\)
Giải |x - 2019| = 1
Th1: x - 2019 = 1 => x = 2020
Th2: x - 2019 = -1 => x = 2018
Vì 2018 ≠ 2020
=> x = 2020
Vậy x \(\in\){ 2020; 2019 }
P/s: Ko chắc :)
a) Ta có:
\(x-\left\{\left[-x-\left(x+3\right)\right]-\left[\left(x+2018\right)-\left(x+2019\right)\right]+21\right\}\)
\(=x-\left\{\left[-x-x-3\right]-\left[x+2018-x-2019\right]+21\right\}\)
\(=x-\left\{\left[-2x-3\right]-\left[2018-2019\right]+21\right\}\)
\(=x+2x+-3+1-21\)
\(=3x-23\)
=> \(3x-23=2020\)
\(3x=2020+23=2043\)
=> \(x=2043:3=681\)
Nhầm
\(=x-\left\{-2x-3+1+21\right\}\\ =x+2x+3-1-21\)
\(=3x-17\\ =>3x-17=2020\\ 3x=2020+17=2037\\ x=2037:3=679\)