K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2

6x6x luôn có chữ số tận cùng là 6 nên 165165 có chữ số tận cùng là 6.

Do đó, 2.1652.165 có chữ số tận cùng là 2

Suy ra 2.165−22.165−2 có chữ số tận cùng là 0

Hay 2.165−22.165−2 chia hết cho 10.

Vậy M chia hết cho 10.

dựa vô đó nha

nếu bn cần gấp thì dựa dô đó chứ mình còn ôn bài nên ko thể giải giúp bn. Thông cảm nha

26 tháng 12 2019

Ta có : S = 2 + 22 + 23 + 24 + 25 + 26 + ... + 297 + 298 + 299

=  (2 + 22 + 23) + (24 + 25 + 26) + ... + (297 + 298 + 299)

=  (2 + 22 + 23) + 23. (2 + 22 + 23) + ... + 296. (2 + 22 + 23)

= 14 + 23.14 + ... + 296.14

= 14.(1 + 23 + ... + 296\(⋮\)14

 => \(S⋮14\left(\text{ĐPCM}\right)\)

26 tháng 12 2019

Ta có : S=2+22+23+...+299

              =(2+22+23)+(24+25+26)+...+(297+298+299)

             =2(1+2+22)+24(1+2+22)+...+297(1+2+22)

             =2.7+24.7+...+297.7

             =14+23.2.7+...+296.2.7

            =14.23.14+...+296.14

Vì 14\(⋮\)14 nên 14.23.14+...+296.14\(⋮\)14

hay S\(⋮\)14

Vậy S\(⋮\)14.

18 tháng 4 2016

a)S=398(3-1)+396(3-1)+...+32(3-1)+(3-1)

S=398*2+396*2+...+32*2+2

S=396*2(32+1)+...+2(32+1)

S=20(396+...+1)

=>S chia hết 20

b) phần này thì dễ rồi nhé

22 tháng 9 2016

S = 1 - 3 + 32 - 33 + ... + 398 - 399 (có 100 số; 100 chia hết cho 4)

S = (1 - 3 + 32 - 33) + (34 - 35 + 36 - 37) + ... + (396 - 397 + 398 - 399)

S = -20 + 34.(1 - 3 + 32 - 33) + ... + 396.(1 - 3 + 32 - 33)

S = -20 + 34.(-20) + ... + 396.(-20)

S = -20.(1 + 34 + ... + 396\(⋮20\left(đpcm\right)\)

 

 

17 tháng 12 2017

a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210

   = (2 + 22) + (23 + 24) +.....+ (29 + 210)

   = 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)

   = 3.(2 + 23 +.... + 29) chia hết cho 3

   => S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)

b) 1+32+33+34+...+399

=(1+3+32+33)+....+(396+397+398+399)

=40+.........+396.40

=40.(1+....+396) chia hết cho 40 (đpcm)

17 tháng 12 2017

ai trả lời giúp mình mình k cho

4 tháng 12 2017

S = (1+3+3^2)+(3^3+3^4+3^5)+.....+(3^97+3^98+3^99)

   = 10+3^3.(1+3+3^2)+.....+3^97.(1+3+3^2)

   = 10+3^3.10+.....+3^97.10

   = 10.(1+3^3+....+3^97) chia hết cho 10

Mà 10 chia hết cho 5 => S chia hết cho 5 

k mk nha

16 tháng 10 2015

Có các số hạng của A\S chia hết cho 2

=> S chia hết cho 2

S = 2+23+25+.....+299

S = (2+23)+(25+27)+....+(297+299)

S = 1.(2+23) + 24(2+23) +....+ 296(2+23)

S = 1.10 + 24.10 +....+ 296.10

S = 10.(1+24+...+296) chia hết cho 10

KL: S chia hết cho 2 và 10 (Đpcm)