K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

Ta có: \(x.S - S = x\left( {1 + x + {x^2} + {x^3} + {x^4} + {x^5}} \right) - \left( {1 + x + {x^2} + {x^3} + {x^4} + {x^5}} \right)\)

\(\begin{array}{l} = x + {x^2} + {x^3} + {x^4} + {x^5} + {x^6} - 1 - x - {x^2} - {x^3} - {x^4} - {x^5}\\ = {x^6} - 1 \text{(đpcm)} \end{array}\)

Ta có: \(S=1+x+x^2+x^3+x^4+x^5\)

\(x\cdot S=x\left(1+x+x^2+x^3+x^4+x^5\right)=x+x^2+x^3+x^4+x^5+x^6\)

Do đó: \(x\cdot S-S=\left(x+x^2+x^3+x^4+x^5+x^6\right)-\left(1+x+x^2+x^3+x^4+x^5\right)\)

\(=x+x^2+x^3+x^4+x^5+x^6-1-x-x^2-x^3-x^4-x^5\)

\(=x^6-1\)(đpcm)

23 tháng 12 2015

x1;x2;x3;x4;x5=-1 hoặc 1

=>x1.x2;x2.x3;x3.x4;x4.x5;x5.x1 bằng 1 hoặc -1

giả sử x1.x2+x2.x3+x3.x4+x4.x5+x5.x1=0

=>số các số hạng 1 và -1 bằng nhau

=>số các số hạng chia hết cho 2

=>5 chia hết cho 2(có 5 số hạng) Vô lí

=>x1.x2+x2.x3+x3.x4+x4.x5+x5.x1\(\ne0\)

=>đpcm

23 tháng 12 2015

chtt

ai làm ơn tích mình ,mình tích lại cho

26 tháng 8 2019

NV
7 tháng 3 2020

1.

a/ \(\Leftrightarrow\left(x+1\right)\left(x^2+3x+2\right)+\left(x-1\right)\left(x^2-3x+2\right)-12=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2\right)+3x\left(x+1\right)-3x\left(x-1\right)+\left(x-1\right)\left(x^2+2\right)-12=0\)

\(\Leftrightarrow2x\left(x^2+2\right)+6x^2-12=0\)

\(\Leftrightarrow x^3+3x^2+2x-6=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+6\right)=0\Rightarrow x=1\)

b/ Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(x^2+\frac{1}{x^2}+3\left(x+\frac{1}{x}\right)+4=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(t^2-2+3t+4=0\Rightarrow t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=-1\\x+\frac{1}{x}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x+1=0\left(vn\right)\\x^2+2x+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

NV
7 tháng 3 2020

1c/

\(\Leftrightarrow x^5+x^4-2x^4-2x^3+5x^3+5x^2-2x^2-2x+x+1=0\)

\(\Leftrightarrow x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^4-2x^3+5x^2-2x+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^4-2x^3+x^2+x^2-2x+1+3x^2=0\)

\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+3x^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x-1=0\\x=0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn

Vậy pt có nghiệm duy nhất \(x=-1\)

11 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x_1-1}{5}=\dfrac{x_2-2}{4}=\dfrac{x_3-3}{3}=\dfrac{x_4-4}{2}=\dfrac{x_5-5}{1}\)

\(=\dfrac{\left(x_1-1\right)+\left(x_2-2\right)+\left(x_3-3\right)+\left(x_4-4\right)+\left(x_5-5\right)}{5+4+3+2+1}\)

\(=\dfrac{\left(x_1+x_2+x_3+x_4+x_5\right)-\left(1+2+3+4+5\right)}{15}\)

\(=\dfrac{30-15}{15}=1\)

\(\Rightarrow x_1=x_2=x_3=x_4=x_5=6\)

Vậy...

11 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x1-1}{5}\)=\(\dfrac{x2-2}{4}\)\(\dfrac{x3-3}{3}\)=\(\dfrac{x4-4}{2}\)=\(\dfrac{x5-5}{1}\)=\(\dfrac{x1-1+x2-2+x3-3+x4-4+x5-5}{5+4+3+2+1}\)=\(\dfrac{x1+x2+x3+x4+x5-\left(1+2+3+4+5\right)}{15}\)=\(\dfrac{30-15}{15}\)=\(\dfrac{15}{15}\)=1

\(\dfrac{x1-1}{5}\)=1 => x1-1=5 => x1 =6

\(\dfrac{x2-2}{4}\)=1 => x2-2=4 => x2 =6

\(\dfrac{x3-3}{3}\)=1 => x3-3=3 => x3 =6

\(\dfrac{x4-4}{2}\)=1 => x4-4=2 => x4 =6

\(\dfrac{x5-5}{1}\)=1 => x5-5=1 => x5 = 6

Vậy x1=x2=x3=x4=x5 =6