CHO TAM GIÁC ABC CÂN TẠI A. TRÊN AB LẤY D . TRÊN TIA ĐỐI AC LẤY E SAO CHO BD=CE. ĐƯỜNG THẲNG QUA D SONG SONG AC CẮT BC TẠI F . GỌI I LÀ GIAO ĐIỂM CỦA DE VÀ BC . CHỨNG MINH A, TAM GIÁC FBD CÂN
B, I LÀ TRUNG ĐIỂM DE
C, AD+AE KHÔNG ĐỔI KHI D, E THAY ĐỔI
Bài này đáng lẽ phải là TRÊN TIA ĐỐI CA LẤY E SAO CHO BD=CE. Quên vẽ điểm F mà câu a) dễ nên tự thêm vô nha.
a) Ta có ^BFD = ^ACB ( DF // AC, đồng vị)
Mà ^ABC = ^ACB ( tam giác ABC cân tại A)
=> ^ABC = ^BFD
Vậy tam giác FBD cân tại D (đpcm)
b) Kẻ \(DM\perp BC;EN\perp BC\)
Ta thấy ngay: \(\Delta BDM=\Delta CEN\left(ch-gn\right)\)
=> MD = NE (hai cạnh tương ứng)
=> \(\Delta DMI=\Delta ENI\left(g.c.g\right)\)
=> DI = EI hay I là trung điểm của DE (đpcm)
c) Ta có: AD + AE = AB - BD + AC + CE = AB + AC = 2AB (không đổi)
=> đpcm...
Đề bị sai em kiểm tra lại đề đi! Chỗ trên AB lấy D , trên tia đối AC lấy E sao cho BD = CE ấy.