K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2021

a có dạng là 4x+2

b có dạng là 4y+2

\(\left(4x+2\right)\left(4y+2\right)\)

\(16xy+8y+8x+4\)

\(4\left(4xy+2y+2x+1\right)⋮4\)

vậy đáp án \(a\left(dư0\right)\)

5 tháng 7 2015

1) a chia 6 dư 2 => a= 6k+2

b chia 6 dư 3 => b= 6k+3

=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6 

2) a= 5k+2; b=5k+3

=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)

=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1

=> ab chia 5 dư 1

16 tháng 9 2015

Đặt a=4m+1, b=4n+2(m,n\(\in\)N)

=>ab=(4m+1)(4n+2)

= 16mn+8m+4n+2

Ta thấy 16mn+8m+4n chia hết cho 4

=> ab:14 dư 2

19 tháng 1 2019

Chọn D

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

15 tháng 9 2020

đề hài vl ko biết b thì chứng minh = mắt à 

15 tháng 9 2020

A số chia 4 dư 3 nên a là số lẻ 

Mà mọi số lẻ bình phương chia 4 đều dư 1 

nên a bình phương chia 3 dư 1 

b bình phương 

nếu b chẵn thì b bình phương chia hết cho 4 

\(a^2-b^2:4\) dư 1 

nếu b lẻ thì bình phương chia 4 dư 1 

\(a^2-b^2⋮4\) 

Chỉ chứng minh được \(a^2-b^2⋮4\) với b lẻ 

23 tháng 7 2018

Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).

Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.

Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮  5 (đpcm).

29 tháng 10 2023

a chia 5 dư 1 nên \(a=5m+1\left(m\inℕ\right)\)

b chia 5 dư 4 nên \(b=5n+4\left(n\inℕ\right)\)

Do đó \(ab=\left(5m+1\right)\left(5n+4\right)+1\)

\(ab=25mn+20m+5n+4+1\)

\(ab=25mn+20m+5n+5⋮5\)

Ta có đpcm

12 tháng 9 2021

Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)

\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)

\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)

\(=25k^2+20k+5k+4+1\)

\(=25k^2+25k+5⋮5\)