Cho a và b là hai số tự nhiên. Biết a chia cho 4 dư 2; b chia cho 4 dư 2.
Tích ab chia cho 4 dư bao nhiêu?
Dư 0
Dư 2
Dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
Đặt a=4m+1, b=4n+2(m,n\(\in\)N)
=>ab=(4m+1)(4n+2)
= 16mn+8m+4n+2
Ta thấy 16mn+8m+4n chia hết cho 4
=> ab:14 dư 2
A số chia 4 dư 3 nên a là số lẻ
Mà mọi số lẻ bình phương chia 4 đều dư 1
nên a bình phương chia 3 dư 1
b bình phương
nếu b chẵn thì b bình phương chia hết cho 4
\(a^2-b^2:4\) dư 1
nếu b lẻ thì bình phương chia 4 dư 1
\(a^2-b^2⋮4\)
Chỉ chứng minh được \(a^2-b^2⋮4\) với b lẻ
Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).
Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.
Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮ 5 (đpcm).
a chia 5 dư 1 nên \(a=5m+1\left(m\inℕ\right)\)
b chia 5 dư 4 nên \(b=5n+4\left(n\inℕ\right)\)
Do đó \(ab=\left(5m+1\right)\left(5n+4\right)+1\)
\(ab=25mn+20m+5n+4+1\)
\(ab=25mn+20m+5n+5⋮5\)
Ta có đpcm
Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)
\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)
\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)
\(=25k^2+20k+5k+4+1\)
\(=25k^2+25k+5⋮5\)
a có dạng là 4x+2
b có dạng là 4y+2
\(\left(4x+2\right)\left(4y+2\right)\)
\(16xy+8y+8x+4\)
\(4\left(4xy+2y+2x+1\right)⋮4\)
vậy đáp án \(a\left(dư0\right)\)