Cho đường tròn (O) đường kính AB. Trên tia đối của tia BA lấy điểm C. Kẻ tiếp tuyến CD với (O), tiếp tuyến tại A của (O) cắt đường thẳng CD tại E. Gọi H là giao điểm của AB với OE, K là giao điểm của BE với (O).
a) Chứng minh AE^2 = EK.EB.
b) Chứng minh 4 điểm B, O, H, K cùng thuộc một đường tròn
c) Cho BC=4cm, CD=\(\sqrt{32}\)Tính bán kính đường tròn (O).
d) Đường thẳng vuông góc với AB tại O cắt CE tại M. Chứng minh \(\frac{AE}{EM}-\frac{EM}{CM}=1\)