K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi giao điểm của OC và AM là H

Suy ra: H là trung điểm của AM

Xét ΔCAM có 

CH là đường trung tuyến ứng với cạnh AM

CH là đường cao ứng với cạnh AM

Do đó: ΔCAM cân tại C

Xét ΔCAO và ΔCMO có

CA=CM

CO chung

OA=OM

Do đó: ΔCAO=ΔCMO

10 tháng 10 2021

1: Xét tứ giác AMON có 

\(\widehat{AMO}+\widehat{ANO}=180^0\)

Do đó: AMON là tứ giác nội tiếp

hay A,M,O,N cùng thuộc một đường tròn

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

\(\text{a) Xét tứ giác ADMO có:}\)

∠DMO =90o (do M là tiếp tuyến của (O))

∠DAO =90o (do AD là tiếp tuyến của (O))

=> ∠DMO + ∠DAO = 180o

=> Tứ giác ADMO là tứ giác nội tiếp.

\(\text{b) Do D là giao điểm của 2 tiếp tuyến DM và DA nên OD là tia phân giác của ∠AOM}\)

=>(AOD = \(\frac{1}{2}\)∠AOM

Mặt khác ta có (ABM là góc nội tiếp chắn cung AM

=> ∠ABM = \(\frac{1}{2}\)∠AOM

=> ∠AOD = ∠ABM

Mà 2 góc này ở vị trí đồng vị

=> OD // BM

Xét tam giác ABN có:

OM// BM; O là trung điểm của AB

=> D là trung điểm của AN

c) Ta có: ΔOBM cân tại O ;OE ⊥MB =>OE là đường trung trực của MB

=>EM = EB => ΔMEB cân tại E => ∠EMB = ∠MEB (1)

ΔOBM cân tại O => ∠OMB = ∠OBM (2)

Cộng (1) và (2) vế với vế, ta được:

∠EMB + ∠OMB = ∠MEB + ∠OBM ⇔ ∠EMO =∠EOB ⇔ ∠EOB =90o

=>OB ⊥ BE

Vậy BE là tiếp tuyến của (O).

d) Lấy điểm E trên tia OA sao cho OE = \(\frac{OA}{3}\)

Xét tam giác OAI có OI vừa là đường cao vừa là trung tuyến

=> Tam giác OAI cân tại I => IA = IB; ∠IBA = ∠IAB

Ta có:

\(\hept{\begin{cases}\widehat{IBA}=\widehat{IAB}\\\widehat{IBA}+\widehat{INA}=90^0\\\widehat{NAI}+\widehat{IAB}=\widehat{NAB}=90^0\end{cases}}\)

=> ∠NAI = ∠INA => ΔINA cân tại I => IA = IN

Tam giác NAB vuông tại A có: IA = IN = IB

=> IA là trung tuyến của tam giác NAB

Xét ΔBNA có:

IA và BD là trung tuyến; IA ∩ BD = {J}

=> J là trọng tâm của tam giác BNA

Xét tam giác AIO có:

\(\frac{\text{AJ}}{AI}=\frac{AE}{A0}=\frac{2}{3}\Rightarrow\text{JE}\text{//}OI\)

=> J nằm trên đường thẳng d vuông góc với AB và cách O một khoảng bằng R/3.

Phần đảo: Lấy điểm J' bất kì thuộc đường thẳng d

Do d// OI (cùng vuông góc AB) nên ta có:

\(\frac{\text{AJ}}{AI}=\frac{AE}{A0}\)

\(\text{MÀ}\frac{AE}{AO}=\frac{2}{3}\Rightarrow\frac{\text{AJ}}{AI}=\frac{2}{3}\)

AI là trung tuyến của tam giác NAB

=> J' là trọng tâm tam giác NAB

Vậy khi M di chuyển trên (O) thì J di chuyển trên đường thẳng d vuông góc với AB và cách O một khoảng là R/3.

HÌNH Ở TRONG THỐNG KÊ HỎI ĐÁP NHA

19 tháng 2 2022

loading...  

a) Ta có: \(\widehat{ANO}=90^0\)

nên N nằm trên đường tròn đường kính AO(1)

Ta có: \(\widehat{AMO}=90^0\)

nên M nằm trên đường tròn đường kính AO(2)

Ta có: \(\widehat{AEO}=90^0\)

nên E nằm trên đường tròn đường kính AO(3)

Từ (1), (2) và (3) suy ra A,M,E,N,O cùng thuộc 1 đường tròn

b) Xét ΔAMK và ΔAIM có 

\(\widehat{AKM}=\widehat{AMI}\left(=\dfrac{1}{2}sđ\stackrel\frown{IM}\right)\)

\(\widehat{IAM}\) chung

Do đó: ΔAMK∼ΔAIM(g-g)

Suy ra: \(\dfrac{AM}{AI}=\dfrac{AK}{AM}\)

hay \(AM^2=AK\cdot AI\)

 

1 tháng 7 2021

câu b ý 2)

Theo câu b) ý 1 \(\Delta AMK\sim\Delta AIM\Rightarrow\dfrac{MI}{MK}=\dfrac{AM}{AK}\Rightarrow\dfrac{MI^2}{MK^2}=\dfrac{AM^2}{AK^2}\)

mà \(AM^2=AI.AK\Rightarrow\dfrac{MI^2}{MK^2}=\dfrac{AI.AK}{AK^2}=\dfrac{AI}{AK}\)