Bài 14:
Tìm các số a,b sao cho phân thức \(\frac{x^2+5}{x^3-3x-2}\)viết được thành \(\frac{a}{x-2}+\frac{b}{\left(x+1\right)^2}\)
Bài 15:
Viết phân thức \(\frac{10x-4}{x^3-4x}\) dưới dạng tổng ba phân thức mà mẫu số theo thứ tự là x;x+2;x-2, tử số là các hằng số.
\(\frac{a}{x-2}+\frac{b}{\left(x+1\right)^2}=\frac{a\left(x+1\right)^2+b\left(x-2\right)}{\left(x-2\right)\left(x+1\right)^2}=\frac{ax^2+\left(2a+b\right)x+\left(a-2b\right)}{x^3-3x-2}\)
\(\Rightarrow\frac{x^2+5}{x^3-3x-2}=\frac{ax^2+\left(2a+b\right)x+\left(a-2b\right)}{x^3-3x-2}\)
Đồng nhất hệ số, ta có :
\(\hept{\begin{cases}a=1\\2a+b=0\\a-2b=5\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-2\end{cases}}}\)
cái thứ 2 tương tự