\(\frac{1}{3^0}\)+\(\frac{1}{3^1}\)+\(\frac{1}{3^2}\)+......+\(\frac{1}{3^{2005}}\)
tính tổng A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐẶT A=\(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)
\(\frac{1}{3}A=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2006}}\)
\(\frac{1}{3}A-A=\frac{1}{3^{2006}}-\frac{1}{3^0}\)
\(\frac{-2}{3}A=\frac{1}{3^{2006}}-\frac{1}{3^0}\)
\(A=\frac{\frac{1}{3^{2006}}-1}{\frac{-2}{3}}\)
\(3S=3+\frac{1}{3}+...+\frac{1}{3^{2004}}\)
\(3S-S=\left(3+\frac{1}{3}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)
\(2S=3-\frac{1}{3^{2005}}\)
\(2S=\frac{3^{2006-1}}{3^{2005}}\)
\(S=\frac{3^{2006}-1}{3^{2005}.2}\)
S = 1/3 + 1/32 + 1/33 + ... + 1/32005
=> 3S = 1 + 1/3 + 1/32 + ... + 1/32004
=> 3S - S = 1 + 1/3 + 1/32 + ... + 1/32004 - (1/3 + 1/32 + 1/33 + ... + 1/32005)
=> 2S = 1 + 1/3 + 1/32 + ... + 1/32004 - 1/3 - 1/32 - 1/33 - ... - 1/32005
=> 2S = 1 - 1/32005
=> S = \(\frac{\frac{1}{3^{2005}}}{2}\)
=> S = 1/32005.2
\(P=1+5+5^2+............+5^{2005}\)
\(5P=5+5^2+5^3+...........5^{2006}\)
\(5P-P=5^{2006}-1\)
\(P=\frac{5^{2006}-1}{4}\)
\(\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\)
Ta nhận thấy các cặp số đều bằng 3/5 và các dấu cũng giống nhau. ( các số có cùng dấu thì phân số đó cũng cùng dấu.)
=> Phân số này sẽ bằng 3/5
\(\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}\)
Ta nhận thấy các cặp số đều bằng -3/5 và các dấu thì trái nhau. ( các số có trái dấu thì phân số đó cũng trái dấu.)
=> Phân số này sẽ bằng -3/5.
Sau khi rút gọn bài toán sẽ thành:
\(\left(\frac{3}{5}-\frac{3}{5}\right)\div\frac{1890}{2005}+115=115\)
Câu b tạm thời mình chưa nghĩ ra. Chúc bạn học tốt.
a) \(A=\left(\frac{3}{5}-\frac{3}{5}\right):\frac{1890}{2005}+115\)
\(\Rightarrow A=115\)
b) \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)
\(\Rightarrow3B-B=\left(1+\frac{1}{3}+....+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)
\(\Rightarrow2B=1-\frac{1}{3^{2005}}\)
\(\Rightarrow B=\frac{1-\frac{1}{3^{2005}}}{2}\)
\(\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2005}}< \frac{1}{2}\)
\(\Rightarrow B< \frac{1}{2}\)
Đặt A \(=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^{2005}}\)
\(\Rightarrow A=\left(1-\frac{1}{3^{2005}}\right):2\)
\(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+2\left(1.\frac{1}{n}-1.\frac{1}{n+1}-\frac{1}{n}.\frac{1}{n+1}\right)=\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2\); vì \(\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n\left(n+1\right)}=0\)
\(S=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+...+\left(1+\frac{1}{2005}-\frac{1}{2006}\right)\)
\(=2005+1-\frac{1}{2006}=2005\frac{2005}{2006}\)
a) \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2015}}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)
\(\Rightarrow3B-B=1-\frac{1}{3^{2015}}\)
\(B=\frac{1-\frac{1}{3^{2015}}}{2}\)
\(A=\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)
\(\Rightarrow3A=1+\frac{1}{3^0}+\frac{1}{3^1}+...+\frac{1}{3^{2004}}\)
\(\Rightarrow2A=1-\frac{1}{3^{2005}}\)
\(\Rightarrow A=\frac{3^{2005}-1}{3^{2005}.2}\)
cảm ơn thành đạt