(\(-\frac{3}{4}^{3x-1}\)) =\(\frac{-27}{64}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(-\frac{3}{4}\right)^{3x-1}=\frac{-27}{64}\)
\(\Leftrightarrow\left(-\frac{3}{4}\right)^{3x-1}=\left(-\frac{3}{4}\right)^3\)
\(\Leftrightarrow3x-1=3\)
\(\Leftrightarrow3x=4\)
\(\Leftrightarrow x=\frac{4}{3}\)
b) Đề sai ! Sửa :
\(\left(\frac{4}{5}\right)^{2x+5}=\frac{256}{625}\)
\(\Leftrightarrow\left(\frac{4}{5}\right)^{2x+5}=\left(\frac{4}{5}\right)^4\)
\(\Leftrightarrow2x+5=4\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\frac{1}{2}\)
c) \(\frac{\left(x+3\right)^5}{\left(x+5\right)^2}=\frac{64}{27}\)
\(\Leftrightarrow\left(x+3\right)^3=\left(\frac{4}{3}\right)^3\)
\(\Leftrightarrow x+3=\frac{4}{3}\)
\(\Leftrightarrow x=-\frac{5}{3}\)
d) \(\left(x-\frac{2}{15}\right)^3=\frac{8}{125}\)
\(\Leftrightarrow\left(x-\frac{2}{15}\right)^3=\left(\frac{2}{15}\right)^3\)
\(\Leftrightarrow x-\frac{2}{15}=\frac{2}{15}\)
\(\Leftrightarrow x=\frac{4}{15}\)
Ta có:
\(\left(-\frac{3}{4}\right)^{3x-1}=-\frac{27}{64}\Rightarrow\left(-\frac{3}{4}\right)^{3x-1}=\left(-\frac{3}{4}\right)^3\)
\(\Rightarrow3x-1=3\Rightarrow3x=4\Rightarrow x=\frac{4}{3}\)
Ta có : \(\left(\frac{-3}{4}\right)^{3x-1}=\frac{-27}{64}\)
⇔ \(\left(\frac{-3}{4}\right)^{3x-1}=\left(\frac{-3}{4}\right)^3\) ⇔ \(3x-1=3\) ⇔ \(x=\left(3+1\right):3\) ⇔ \(x=\frac{4}{3}\)
a)
\((3x-7)^5=0\Rightarrow 3x-7=0\Rightarrow x=\frac{7}{3}\)
b)
\(\frac{1}{4}-(2x-1)^2=0\)
\(\Leftrightarrow (2x-1)^2=\frac{1}{4}=(\frac{1}{2})^2=(-\frac{1}{2})^2\)
\(\Rightarrow \left[\begin{matrix} 2x-1=\frac{1}{2}\\ 2x-1=\frac{-1}{2}\end{matrix}\right.\Rightarrow \Rightarrow \left[\begin{matrix} x=\frac{3}{4}\\ x=\frac{1}{4}\end{matrix}\right.\)
c)
\(\frac{1}{16}-(5-x)^3=\frac{31}{64}\)
\(\Leftrightarrow (5-x)^3=\frac{1}{16}-\frac{31}{64}=\frac{-27}{64}=(\frac{-3}{4})^3\)
\(\Leftrightarrow 5-x=\frac{-3}{4}\)
\(\Leftrightarrow x=\frac{23}{4}\)
d)
\(2x=(3,8)^3:(-3,8)^2=(3,8)^3:(3,8)^2=3,8\)
\(\Rightarrow x=3,8:2=1,9\)
e)
\((\frac{27}{64})^9.x=(\frac{-3}{4})^{32}\)
\(\Leftrightarrow [(\frac{3}{4})^3]^9.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow (\frac{3}{4})^{27}.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow x=(\frac{3}{4})^{32}:(\frac{3}{4})^{27}=(\frac{3}{4})^5\)
f)
\(5^{(x+5)(x^2-4)}=1\)
\(\Leftrightarrow (x+5)(x^2-4)=0\)
\(\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2=4=2^2=(-2)^2\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=-5\\ x=\pm 2\end{matrix}\right.\)
g)
\((x-2,5)^2=\frac{4}{9}=(\frac{2}{3})^2=(\frac{-2}{3})^2\)
\(\Rightarrow \left[\begin{matrix} x-2,5=\frac{2}{3}\\ x-2,5=\frac{-2}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{19}{6}\\ x=\frac{11}{6}\end{matrix}\right.\)
h)
\((2x+\frac{1}{3})^3=\frac{8}{27}=(\frac{2}{3})^3\)
\(\Rightarrow 2x+\frac{1}{3}=\frac{2}{3}\Rightarrow x=\frac{1}{6}\)
Phương trình 1:
\(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)
\(\Rightarrow\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}-10=0\)
\(\Rightarrow\left(\frac{x-85}{15}-1\right)+\left(\frac{x-74}{13}-2\right)+\left(\frac{x-67}{11}-3\right)+\left(\frac{x-64}{9}-4\right)=0\)
\(\Rightarrow\frac{x-85-15}{15}+\frac{x-74-26}{13}+\frac{x-67-33}{11}+\frac{x-64-36}{9}=0\)
\(\Rightarrow\frac{x-100}{15}+\frac{x-100}{13}+\frac{x-100}{11}+\frac{x-100}{9}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
Do \(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy x = 100.
Phương trình 3:
\(\frac{1909-x}{91}+\frac{1907-x}{93}+\frac{1905-x}{95}+\frac{1903-x}{97}+4=0\)
\(\Rightarrow\left(\frac{1909-x}{91}+1\right)+\left(\frac{1907-x}{93}+1\right)+\left(\frac{1905-x}{95}+1\right)+\left(\frac{1903-x}{97}+1\right)=0\)
\(\Rightarrow\frac{1909-x+91}{91}+\frac{1907-x+93}{93}+\frac{1905-x+95}{95}+\frac{1903-x+97}{97}=0\)
\(\Rightarrow\frac{2000-x}{91}+\frac{2000-x}{93}+\frac{2000-x}{95}+\frac{2000-x}{97}=0\)
\(\Rightarrow\left(2000-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
Do \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)
\(\Rightarrow2000-x=0\)
\(\Rightarrow x=2000\)
Vậy x = 2000.
a) Vì \(3x=\frac{2}{3}y=\frac{4}{5}z\)
\(\Rightarrow3x:12=\frac{2}{3}y:12=\frac{4}{5}z:12\)
\(\Rightarrow\frac{x}{4}=\frac{y}{18}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{18}=\frac{z}{15}=\frac{x-y-z}{4-18-15}=\frac{10}{-29}=\frac{-10}{29}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{-10}{29}.4=\frac{-40}{29}\\y=\frac{-10}{29}.18=\frac{-180}{29}\\z=\frac{-10}{29}.15=\frac{-150}{29}\end{cases}}\)
Vậy ...
b) Ta có; \(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)và \(x^2+2y^2-3z^2=-650\left(1\right)\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}\left(2\right)}\)
Thay (2) vào (1) ta được:
\(\left(2k\right)^2+2.\left(3k\right)^2-3.\left(4k\right)^2=-650\)
\(\Leftrightarrow4k^2+18k^2-48k^2=-650\)
\(\Leftrightarrow-26k^2=-650\)
\(\Leftrightarrow k^2=25\)
\(\Leftrightarrow k=\pm5\)
TH1: Thay k=5 vào (2) ta được:
\(\hept{\begin{cases}x=2.5=10\\y=3.5=15\\z=4.5=20\end{cases}}\)
TH2: Thay k=-5 vào (2) ta được:
\(\hept{\begin{cases}x=-5.2=-10\\y=-5.3=-15\\z=-5.4=-20\end{cases}}\)
Vậy \(\left(x,y,z\right)=\left\{\left(10;15;20\right);\left(-10;-15;-20\right)\right\}\)
a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)
=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)
=> \(\left|2-\frac{3}{2}x\right|=x+6\)
ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)
Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)
=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)
=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)
b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)
=> x = 1/4
hoặc x = 0 hoặc x = 1/2
a)\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)(Trừ từng số hạng cho 1;2;3;4 rồi nhóm)
Vậy x=100.
b)\(\Leftrightarrow\left(x-14\right)\left(\frac{1}{13}-\frac{1}{15}-\frac{1}{27}+\frac{1}{29}\right)=0\)(Trừ từng số cho 1)
Vậy x=14.
a,(5/8/17+-4/17):x+33/182=4/11
=5/4/17:x+33/182=4/11
5/4/17:x=4/11-33/182
5/4/17:x=365/2002
x=5/4/17:365/2002
x=28/4438/6205
b,-1/5/27-(3x-7/9)^3=-24/27
(3x-7/9)^3=-1/5/27--24/27
(3x-7/9)^3=-8/27
(3x-7/9)^3=(-2/3)^3
3x-7/9=-2/3
3x=-2/3+7/9
3x=1/9
x=1/9:3
x=1/27
\(\left(-\frac{3}{4}\right)^{3x-1}=-\frac{27}{64}\)
\(\left(-\frac{3}{4}\right)^{3x-1}=\left(-\frac{3}{4}\right)^3\)
\(\Rightarrow3x-1=3\)
\(\Rightarrow3x=4\)
\(\Rightarrow x=\frac{4}{3}\)
\(\left(-\frac{3}{4}\right)^{3x-1}\)= \(\frac{-27}{64}\)
đây là lỗi nhỏ mong online math mong đừng trừ điểm và mong các bạn thông cẩm