K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

272hay 27y2

21 tháng 10 2021

272

19 tháng 8 2018

\(5x^4+y^2-4x^2y-85=0\)

\(\Leftrightarrow x^4=4x^2-4x^2y+y^2-85=0\)

\(\Leftrightarrow x^4+\left(2x^2-y\right)^2=85\)

\(\Leftrightarrow x^4\in\left\{3^4;2^4;1^4;0^4\right\}\)

tiếp tục xét lần lượt các trường hợp:

+) nếu \(x^4=0^4\Rightarrow x=0\Rightarrow y^2=85\Rightarrow y\in\varnothing\)

+) nếu \(x^4=1^4\Rightarrow x=\pm1\Rightarrow\left(y-2\right)^2=84\Rightarrow y\in\varnothing\)

+) nếu \(x^4=2^4\Rightarrow x=\pm2\Rightarrow\left(y-8\right)^2=69\Rightarrow x\in\varnothing\)

+) nếu \(x^4=3^4\Rightarrow x=\pm3\Rightarrow\left(y-18\right)^2=2^2\)

\(\Leftrightarrow\orbr{\begin{cases}y-18=2\\y-18=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}y=20\\y=16\end{cases}}}\)( nhận ) 

P/s nhận cả hai nhé

19 tháng 8 2020

xy - 4x = 29 - 5y

<=> x(y - 4) - 29 + 5y = 0

<=> x(y - 4) + 5(y - 4) - 9 = 0

<=> (x + 5)(y - 4) = 9 = 1.9 = 3.3

Lập bảng:

x + 5 1 -1 3 -3 9 -9
y - 4 9  -9 3 -3 1 -1

x

 -4 -6 -2 -8 4 -14
 y 13 -5 7 1 5 3
NV
25 tháng 8 2021

\(\Rightarrow\left(x^2+2\right)^2=2x^4-4x^2+m\)

\(\Rightarrow m=-x^4+8x^2+4\)

BBT \(f\left(x\right)=-x^4+8x^2+4\Rightarrow4< m< 20\)

25 tháng 8 2021

Phương trình ⇒ (x2 + 2)2 = 2x4 - 4x2 + m

⇔ m = - x4 + 8x2 + 4 (1)

(1) là phương trình hoành độ giao điểm của đồ thị hàm số y = m và độ thị hàm số y = f(x) =  - x4 + 8x2 + 4.

Đạo hàm : \(y'\) = - 4x3 + 16x = x (16 - 4x2) = x (4 - 2x) (4 + 2x)

y' = 0 ⇔ \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\) 

y' > 0 ⇔ x ∈ \(\left(-\infty;-\dfrac{1}{2}\right)\cup\left(0;\dfrac{1}{2}\right)\) (Đồng biến)

y' < 0 ⇔ x ∈ \(\left(-\dfrac{1}{2};0\right)\cup\left(\dfrac{1}{2};+\infty\right)\) (nghịch biến)

(1) có 4 nghiệm phân biệt khi y = m cắt y = f(x) tại 4 điểm phân biệt

⇔ f(0) < m < f\(\left(\dfrac{1}{2}\right)\)

⇔ 4 < m < 20

 

 

 

7 tháng 7 2021

a) Thay m=3 vào pt ta được:

\(9x+6=4x+9\Leftrightarrow x=\dfrac{3}{5}\)

Vậy...

b) Thay x=-1,5 vào pt ta được:

\(m^2\left(-1,5\right)+6=4.\left(-1,5\right)+3m\)

\(\Leftrightarrow\dfrac{-3}{2}m^2-3m+12=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)

Vậy...

c)Pt \(\Leftrightarrow x\left(m^2-4\right)=3m-6\)

Để pt vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6\ne0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=-2\)

Để pt có vô số nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6=0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=2\)

d)Để pt có nghiệm \(\Leftrightarrow m^2-4\ne0\Leftrightarrow m\ne\pm2\)

 \(\Rightarrow x=\dfrac{3m-6}{m^2-4}=\dfrac{3\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{3}{m+2}\)

Để \(x\in Z\Leftrightarrow\dfrac{3}{m+2}\in Z\)

Vì \(m\in Z\Leftrightarrow m+2\in Z\).Để \(\dfrac{3}{m+2}\in Z\Leftrightarrow m+2\inƯ\left(3\right)=\left\{-1;-3;1;3\right\}\)

\(\Leftrightarrow m=\left\{-3;-5;-1;1\right\}\) (tm)

Vậy...

27 tháng 8 2020

Ta xét phương trình \(4x-5y-6xy+7=0\Leftrightarrow2x\left(2-3y\right)=5y-7\)

\(\Leftrightarrow2x=\frac{5y-7}{2-3y}\Leftrightarrow x=\frac{5y-7}{4-6y}\)

Để x nguyên thì \(\frac{5y-7}{4-6y}\)nguyên hay \(5y-7⋮4-6y\)

\(\Leftrightarrow6\left(5y-7\right)⋮4-6y\Leftrightarrow30y-42⋮4-6y\)

\(\Leftrightarrow-22-5\left(4-6y\right)⋮4-6y\)

Mà \(-5\left(4-6y\right)⋮4-6y\)nên \(-22⋮4-6y\)hay \(4-6y\inƯ\left(22\right)=\left\{\pm1;\pm2;\pm11;\pm22\right\}\)

Mà 4 - 6y chẵn nên \(4-6y\in\left\{\pm2;\pm22\right\}\)

Lập bảng:

\(4-6y\)\(-2\)\(2\)\(-22\)\(22\)
\(y\)\(1\)\(\varnothing\)\(\varnothing\)\(-3\)
\(x=\frac{5y-7}{4-6y}\)\(1\)\(\varnothing\)\(\varnothing\)\(-1\)

Vậy phương trình có 2 nghiệm \(\left(x,y\right)\in\left\{\left(1;1\right);\left(-1;-3\right)\right\}\)

\(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)

\(=4m^2-4m+1-8m+8\)

\(=4m^2-12m+9=\left(2m-3\right)^2\)

Để phương trình có hai nghiệm phân biệt thì 2m-3<>0

hay m<>3/2

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\2x_1+2x_2=-2m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\4x_1+4x_2=-4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=-4m+13\\4x_2=3x_1-11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\4x_2=\dfrac{-12m+36}{7}-\dfrac{77}{7}=\dfrac{-12m-41}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\x_2=\dfrac{-12m-41}{28}\end{matrix}\right.\)

Theo Vi-et, ta được: \(x_1x_2=\dfrac{m-1}{2}\)

\(\Leftrightarrow\dfrac{\left(4m-13\right)\left(12m+41\right)}{196}=\dfrac{m-1}{2}\)

\(\Leftrightarrow\left(4m-13\right)\left(12m+1\right)=98\left(m-1\right)\)

\(\Leftrightarrow48m^2+4m-156m-13-98m+98=0\)

\(\Leftrightarrow48m^2-250+85=0\)

Đến đây bạn chỉ cần giải pt bậc hai là xong rồi

9 tháng 3 2022

 \(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+10\)

\(=\left(2m-3\right)^2+1>0\)

Vậy pt có 2 nghiệm pb  

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\left(1\right)\\x_1x_2=\dfrac{m-1}{2}\left(2\right)\end{matrix}\right.\)

Ta có \(3x_1-4x_2=11\left(3\right)\)

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}4x_1+4x_2=2-4m\\3x_1-4x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=13-4m\\x_2=\dfrac{1-2m}{2}-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{13-4m}{7}\\x_2=\dfrac{1-2m}{2}-\dfrac{13-4m}{7}\end{matrix}\right.\)

\(x_2=\dfrac{7-14m-26+8m}{14}=\dfrac{-19-6m}{14}\)

Thay vào (2) ta được \(\left(\dfrac{13-4m}{7}\right)\left(\dfrac{-19-6m}{14}\right)=\dfrac{m-1}{2}\)

\(\Leftrightarrow m=4,125\)

22 tháng 8 2019

a, \(x^4-4x^3-6x^2-4x+1=0\)(*)

<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)

<=> \(\left(x^2-2x+1\right)^2=12x^2\)

<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)

Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)

<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)

=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)

<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)

<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm

Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

9 tháng 3 2023

a) \(2x^2-5x+1=0\)

\(\Delta=b^2-4ac\Rightarrow\left(-5\right)^2-4.2.1=17>0\)

Phương trình có 2 nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{17}}{2.2}=\dfrac{5+\sqrt{17}}{4}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{17}}{2.2}=\dfrac{5-\sqrt{17}}{4}\)

___________________________________________________

b) \(4x^2+4x+1=0\)

\(\Delta=b^2-4ac\Rightarrow4^2-4.4.1=0\)

Vậy phương trình có nghiệm kép:

___________________________________________________

c) \(5x^2-x+2=0\)

\(\Delta=b^2-4a\Rightarrow\left(-1\right)^2-4.5.2=-39\)

Vậy phương trình vô nghiệm.

9 tháng 3 2023

Phần b: 

Vậy pt có nghiệm kép:

\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{-4}{2.4}=-\dfrac{1}{2}\)