K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

https://hoidap247.com/cau-hoi/241131

Bn vô đó tham khảo nha!

12 tháng 3 2020

Ừm,mình biết rồi.Cảm ơn bạn nhé!

12 tháng 3 2022

a, Xét tam giác AHB và tam giác AHC có 

AH _ chung 

AB = AC 

Vậy tam giác AHB~ tam giác AHC (ch-cgv) 

Ta có tam giác ABC cân tại A, có AH là đường cao 

đồng thười là đường pg 

b, Xét tam giác AMH và tam giác NAH có 

HA _ chung 

^MAH = ^NAH 

Vậy tam giác AMH = tam giác NAH (ch-gn) 

=> AM = AN ( 2 cạnh tương ứng ) 

c, Ta có AM/AB = AN/AC => MN // BC 

d, Ta có \(AH^2+BM^2=AN^2+BH^2\)

Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)

Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)

Lại có AM = AN (cmt) 

\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M) 

Vậy ta có đpcm 

 

12 tháng 3 2022

a vẽ hình cho e đc k ạ

22 tháng 1 2016

a,xét tam giac AHB va AHC.Ta có

góc AHB=góc AHC (vi = 90 độ)

cạnh AB=AC(vì ABC cân tại A)

góc B=góc C (vì ABC cân tại A)

-> tam giác AHB=AHC (cạnh huyền-góc nhọn)

-> goc MAH=gocNAH

b, xét tam giac AMH va ANH. có

goc ANH=góc AMH (90 độ)

cạnh AH chung

goc MAH=goc NAH(cm trên)

->tam giac AMH=ANH (cạnh huyền góc nhọn)

->AM=AN

->AMN là tam giác cân tại A

 

26 tháng 1 2017

TU VE HINH NHA

CÓ TAM GIÁC ABC VUÔNG TẠI A :

=>AB=AC( DN TAM GIÁC CÂN)

a) XÉT TAM GIÁC ABH VUÔNG TẠI H VÀ TAM GIÁC ACH VUÔNG TẠI H CÓ:

AB=AC( CMT)

AH CHUNG

=> TAM GIÁC AHB = TAM GIAC AHC( CH- CGV)

b)TAM GIÁC AHB= TAM GIÁC AHC (CM Ở CÂU a)

=>GÓC BAH = GÓC CAH(2 GÓC TƯƠNG ỨNG)

XÉT TAM GIÁC AMH VUÔNG TẠI M VÀ TÂM GIC ANH VUÔNG TẠI N CÓ:

GÓC BAH= GÓC CAH(CMT)

AH CHUNG

=> TAM GIÁC AMH = TAM GIÁC ANH( CH- GN)

=>AM=AN( 2 CÁNH TUONG ỨNG)

=>TAM GIAC AMN CÂN TẠI A( DN TAM GIAC CAN )

K CHO M NHA

26 tháng 1 2017

bạn náo giải câu c, d mình tích cho

17 tháng 2 2016

Mình mới học lớp 6 thôi

17 tháng 2 2016

@trần thị giang : thì mình KHÔNG hỏi bạn, nếu ai biết thì trả lời, CÂM ĐƯỢC RỒI 

10 tháng 2 2020

A B C H M N

- Ta có : \(\Delta ABC\) cân tại A .

=> AB = AC ( Tính chất tam giác cân )

=> \(\widehat{ABH}=\widehat{ACH}\) ( Tính chất tam giác cân )

- Xét \(\Delta AHB\)\(\Delta AHC\) có :

\(\left\{{}\begin{matrix}AB=AC\left(cmt\right)\\\widehat{ABH}=\widehat{ACH}\left(cmt\right)\\AH=AH\end{matrix}\right.\)

=> \(\Delta AHB\) = \(\Delta AHC\) ( c - g -c )

b, Ta có : \(\Delta AHB\) = \(\Delta AHC\) ( câu a )

=> BH = CH ( cạnh tương ứng )

- Xét \(\Delta HMB\)\(\Delta HNC\) có :

\(\left\{{}\begin{matrix}\widehat{HMB}=\widehat{HNC}\left(=90^o\right)\\BH=CH\left(cmt\right)\\\widehat{ABC}=\widehat{ACB}\left(cmt\right)\end{matrix}\right.\)

=> \(\Delta HMB\) = \(\Delta HNC\) ( Ch - Cgv )

=> MB = NC ( cạnh tương ứng )

Ta có : \(\left\{{}\begin{matrix}AB=AM+BM\\AC=AN+CN\end{matrix}\right.\)

Mà AB = AC (tam giác cân )

=> \(AM=AN\)

- Xét \(\Delta AMN\) có : AM = AN ( cmt )

=> \(\Delta AMN\) là tam giác cân tại A ( đpcm )

c, - Ta có : \(\Delta AMN\) cân tại A ( cmt )

=> \(\widehat{AMN}=\widehat{ANM}\)

\(\widehat{AMN}+\widehat{ANM}+\widehat{MAN}=180^o\)

=> \(\widehat{2AMN}+\widehat{MAN}=180^o\)

=> \(\widehat{AMN}=\frac{180^o-\widehat{MAN}}{2}\) ( I )

- Ta có : \(\Delta ABC\) cân tại A .

=> \(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)

=> \(\widehat{2ABC}+\widehat{BAC}=180^o\)

=> \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\) ( II )

Ta có : \(\widehat{ABC}=\widehat{AMN}\left(=\frac{180^o-\widehat{BAC}}{2}\right)\)

Mà 2 góc trên ở vị trí đồng vị .

=> MN // BC ( Tính chất 2 đoạn thẳng song song )

10 tháng 2 2020

d, ( Hình vẽ câu trên nha )

- Áp dụng định lý pi - ta - go vào \(\Delta AHB\perp H\) có :

\(AH^2+BH^2=AB^2\)