K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

Đê thiếu : Cho a,b,c > 0 ; a + b + c = 1 nhé

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Áp dụng BĐT Cô si cho 3 số dương 

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

12 tháng 3 2020

C2:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)

Dấu "=" xảy ra tại \(a=b=c=\frac{1}{3}\)

C3:Nếu không muốn cm BĐT Cauchy-schwarz,ta dùng bđt phụ sau:\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)

Áp dụng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}=\frac{4}{1-c}+\frac{1}{c}\)

Đến đây 1 biến thì ngon rồi

C4:\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3+\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

\(\ge3+2+2+2=9\)

Dấu "=" xảy ra tại \(a=b=c=\frac{1}{3}\)

16 tháng 7 2015

Cách khác:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)

17 tháng 10 2016

Áp dụng Bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)(Đpcm)

17 tháng 7 2015

(a+b+c)(1/a+1/b+1/c)>=9

=>1+1+1+a/b+a/c+b/a+b/c+c/a+c/b>=9

=>(a/b+b/a)+(a/c+c/a)+(b/c+c/b)>=6

Áp dụng bất đẳng thức cauchy cho a/b và b/a  ;b/c và c/b ; a/c và c/a

=>a/b+b/a>=2 (1)

    a/c+c/a>=2 (2)

    b/c+c/b>=2 (3)

Từ (1);(2) và (3) =>(a/b+b/a)+(a/c+c/a)+(b/c+c/b)>=6

Vậy (a+b+c)(1/a+1/b+1/c)>=9

 

7 tháng 9 2018

cô si 3 sô a+b+c>= căn bậc 3 abc tg tự co 1/a + 1/b +1/c >= căn bậc 3 1/abc nhân vào co dpcm

23 tháng 3 2017

Áp dụng dịnh lí Côsi, ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)

\(=9\sqrt[3]{abc.\frac{1}{abc}}\)

\(=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

30 tháng 4 2018

ta có

\(M=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Lại áp dụng bất đẳng thức : \(\frac{x}{y}+\frac{y}{x}\ge2\)vào vế trên ta được \(M\ge3+2+2+2=9\left(dpcm\right)\)

30 tháng 4 2018

Áp dụng bất đẳng thức Bunyakovsky , ta có 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\frac{\sqrt{a}}{\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{b}}+\frac{\sqrt{c}}{\sqrt{c}}\right)^2=\left(1+1+1\right)^2=9\)

8 tháng 8 2017

a)\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}+c^2-c+\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\)

Xảy ra khi \(a=b=c=\frac{1}{2}\)

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+1\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)

\(\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}=\frac{\frac{\left(a+b\right)^2}{4}}{2}>\frac{\frac{1}{4}}{2}=\frac{1}{8}\)

c)\(BDT\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\)

Khi a=b

27 tháng 12 2017

Ta co 

1+a=(a+b)+(a+c)\(\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\)

Tuong tu => 1+b\(\ge2\sqrt{\left(b+c\right)\left(b+a\right)}\)

                    1+c\(\ge2\sqrt{\left(c+a\right)\left(c+b\right)}\)

=>(1+a)(1+b)(1+c)\(\ge\)8(a+b)(b+c)(c+a)=8(1-a)(1-b)(1-c)(ĐPCM)