Cho tam giác ABC cân tại A.Vẽ các đường phân giác BD,CE
a)Chứng minh:BD=CE
b)BD cắt CE ở I.Chứng minh:tam giác BIC cân và tam giác BIE=tam giác CID
c)Chứng minh:AI vuông góc ED và ED song song với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai câu đầu bạn Amanda làm cho bạn rồi, để mình làm câu c cho bạn
c) Ta có: ΔEIB=ΔDIC(cmt)
⇒IE=ID(hai cạnh tương ứng)
⇒I nằm trên đường trung trực của ED(tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: ΔEIB=ΔDIC(cmt)
⇒BE=CD(hai cạnh tương ứng)
Ta có: AE+BE=AB(do A,E,B thẳng hàng)
AD+DC=AC(do A,D,C thẳng hàng)
mà AB=AC(ΔABC cân tại A)
và BE=CD(cmt)
nên AE=AD
⇒A nằm trên đường trung trực của ED(tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AI là đường trung trực của ED
hay AI⊥ED(đpcm)
Xét ΔAED có AE=AD(cmt)
nên ΔAED cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{AED}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAED cân tại A)(3)
Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(4)
Từ (3) và (4) suy ra \(\widehat{AED}=\widehat{ABC}\)
mà \(\widehat{AED}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên ED//BC(dấu hiệu nhận biết hai đường thẳng song song)
a/ ta có \(\hept{\begin{cases}\widehat{ACE}=\widehat{BCE}=\widehat{\frac{ACB}{2}}\\\widehat{ABD}=\widehat{CBD}=\widehat{\frac{ABC}{2}}\end{cases}}\)( tia phân giác )
mà \(\widehat{ACB}=\widehat{ABC}\)( tam giác cân)
nên ACE=BCE=ABD=CBD
xét tam giác ABD và tam giác ACE có
ABD=ACE(cmt) ; góc A chung ; AB=AC(tam giác cân)
=> tam giác ABD=tam giác ACE (G-C-G) => BD=CE
b/ ta có BCE=CBD (cmt) => tam giác BIC cân tại I
xét tam giácBIE và tam giác CID có
BI=IC(tam giác BIC cân) ; BIE=ICD(ABD=ACE) ; BIE=CID(2 góc đối đỉnh)
=> tam giác BIE= tam giác CID (G-C-G)
c/ ta có BD, CE là tia p/g cắt nhau tại I => I là gđ của 3 đg phân giác của tam giác ABC
=> AI là tia phân giác của BAC
ta có AB=AE+BE ; AC=AD+DC
mà BE=CD ( tam giác BIE= tam giác CID) ; AB=AC (tam giác ABC cân)
nên AE=AD => tam giác AED cân
mặt khác AI là tia phân giác => AI là đường cao => AI vuông góc vs ED
ta có \(\hept{\begin{cases}\widehat{AED}=\frac{180^0-\widehat{A}}{2}\\\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\end{cases}}\)(tam giác cân)
=> AED=ABC
mà 2 góc nằm ở vị trí đồng vị => ED//BC
A) Ta có \(\Delta\)ABC cân tại A =>góc ABC= góc ACB => \(\frac{1}{2}\)góc ABC =\(\frac{1}{2}\)góc ACB => góc DBC = góc ECB = góc DBE = góc DCE
Xét \(\Delta\)ECB và \(\Delta\)DBC có
-góc DBC = góc ECB
- BC chung
-góc EBC = góc DCB
=> \(\Delta\)ECB = \(\Delta\)DBC ( g.c.g )
=> CE =BD
B, Ta có góc IBC = góc ICB ( góc DBC =góc ECB chứng minh trên )
=> \(\Delta\)IBC cân tại I => BI = CI
Xét \(\Delta\)BIE và \(\Delta\)CID có
- góc BIE = góc CID ( 2 góc đối đỉnh )
- IB =CI ( chứng minh trên )
- góc IBE =ICD ( chứng minh trên ý a )
=> \(\Delta\)BIE =\(\Delta\)CID (g.c.g)
C, Ta có AB =AC ( \(\Delta\)ABC cân tại A )
Mà BE =CD ( \(\Delta\) EBD =\(\Delta\)DCE )
=> AE =AD (1)
Lại có BD =CE ( chứng minh trên ý a )
Mà BI =CI ( chứng minh trên )
=> EI =ID (2)
Từ (1) và (2) => AI là đường trung trực của ED
=> AI \(⊥\)ED
Ta có \(\Delta\)EAD cân tại A có Ai là đường phân giác => góc EAI = góc DAI
Lại có \(\Delta\)ABC cân tại A có AI là tia phân giác đồng thời là đường cao => AI \(⊥\)BC
\(\hept{\begin{cases}AI⊥DE\\AI⊥BC\end{cases}}\)
=> ED sog sog BC
Chúc bạn học giỏi
Kết bạn với mình nha
Bạn tự vẽ hình
a Xét tam giác ABD và tam giác ACE có
góc BEC= góc CDB= 90 độ
AB=AC
AH chung
suy ra tam giác ABD= tam giác ACE(c.g.c)
b) Vì tam giác ABD= tam giác ACE( theo a)
suy ra BD=CEhay BH=CH( 2canhj tương ứng)
Xét tam giác BHC có
BH= CH
suy ra tam giác BHC cân tại H
a) Xét ∆BDC và ∆CEB, có:
góc BDC = góc CEB = 90°
BC: cạnh chung
góc DCB = góc EBC (gt)
Vậy ∆BDC = ∆CEB (ch-gn)
b) Có: ∆BDC =∆CEB (cmt)
=> góc DBC = góc ECB (2 góc tương ứng)
Có: góc EBC = góc EBI +góc DBC
góc DCB = góc DCI + góc ECB
Mà: góc EBC = góc DCB (gt)
góc DBC = góc ECB (cmt)
Nên: góc EBI = góc DCI
c) Có: EB = DC (∆CEB = ∆BDC)
AB = AC (gt)
Mà: AE + EB = AB
AD + DC = AC
Nên: AE = AD
Xét ∆AEI và ∆ADI, có:
góc AEI = góc ADI = 90°
AE = AD (cmt)
Ai: cạnh chung
Vậy ∆AEI = ∆ADI (ch-cgv)
=> góc EAI = góc DAI (2 góc tương ứng)
Xét ∆ABH và ∆ACH có:
góc ABH = góc ACH (gt)
AB = AC ( gt)
góc EAI = góc DAI (cmt)
Vậy ∆ABH = ∆ACH (g-c-g)
=> góc AHB = góc AHC (2góc tương ứng)
Có: góc AHB + góc AHC = 180° (2góc kề bù)
góc AHB = góc AHC (cmt)
Nên: góc AHB = góc AHC = 180° ÷ 2 = 90°
Vậy AH _|_ BC
" Tớ hem biết câu d, chúc bạn may mắn ;-)"
a) Ta có $\angle ABD = \angle EBD$ (vì BD là phân giác của góc $\angle ABC$), và $\angle ADB = \angle EDB = 90^\circ$ (vì DE vuông góc với BC). Vậy tam giác ABD và tam giác EBD có cặp góc đồng nhất, nên chúng bằng nhau theo trường hợp góc - góc - góc của các tam giác đồng dạng. Do đó, ta có tam giác ABD = tam giác EBD.
b) Ta cần chứng minh AH song song với DE, và tam giác AID cân.
Ta có $\angle ABD = \angle EBD$ (theo phần a)), và $\angle ADB = \angle EDB = 90^\circ$ (vì DE vuông góc với BC). Vậy tam giác ABD và tam giác EBD đồng dạng. Do đó:
$$\frac{AB}{EB} = \frac{BD}{BD} = 1$$
$$\Rightarrow AB = EB$$
Mà $AH$ là đường cao của tam giác $ABC$, nên $AB = AH \cos(\widehat{BAC})$. Tương tự, ta có $EB = ED \cos(\widehat{BAC})$. Vậy:
$$\frac{AH}{ED} = \frac{AB}{EB} = 1$$
Do đó, $AH = ED$, hay $AH$ song song với $DE$.
Tiếp theo, ta chứng minh tam giác $AID$ cân. Ta có:
$$\angle AID = \angle BID - \angle BIA = \frac{1}{2} \angle ABC - \angle BAC$$
Mà $\angle ABC = 90^\circ + \angle BAC$, nên:
$$\angle AID = \frac{1}{2}(90^\circ + \angle BAC) - \angle BAC = \frac{1}{2}(90^\circ - \angle BAC)$$
Tương tự, ta có:
$$\angle ADI = \frac{1}{2} \angle ADB = \frac{1}{2} \cdot 90^\circ = 45^\circ$$
Vậy tam giác $AID$ có hai góc bằng nhau là $\angle AID$ và $\angle ADI$, nên đó là tam giác cân.
Vậy, ta đã chứng minh được rằng $AH$ song song với $DE$, và tam giác $AID$ cân.
Xem lại KHỐI LỚP và cách áp dụng KIẾN THỨC như thế nào cho đúng với lứa tuổi.