K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020
https://i.imgur.com/ionUNsO.jpg

Hai câu đầu bạn Amanda làm cho bạn rồi, để mình làm câu c cho bạn

c) Ta có: ΔEIB=ΔDIC(cmt)

⇒IE=ID(hai cạnh tương ứng)

⇒I nằm trên đường trung trực của ED(tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ΔEIB=ΔDIC(cmt)

⇒BE=CD(hai cạnh tương ứng)

Ta có: AE+BE=AB(do A,E,B thẳng hàng)

AD+DC=AC(do A,D,C thẳng hàng)

mà AB=AC(ΔABC cân tại A)

và BE=CD(cmt)

nên AE=AD

⇒A nằm trên đường trung trực của ED(tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AI là đường trung trực của ED

hay AI⊥ED(đpcm)

Xét ΔAED có AE=AD(cmt)

nên ΔAED cân tại A(định nghĩa tam giác cân)

\(\widehat{AED}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAED cân tại A)(3)

Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(4)

Từ (3) và (4) suy ra \(\widehat{AED}=\widehat{ABC}\)

\(\widehat{AED}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên ED//BC(dấu hiệu nhận biết hai đường thẳng song song)

4 tháng 7 2017

a/ ta có \(\hept{\begin{cases}\widehat{ACE}=\widehat{BCE}=\widehat{\frac{ACB}{2}}\\\widehat{ABD}=\widehat{CBD}=\widehat{\frac{ABC}{2}}\end{cases}}\)( tia phân giác )

mà \(\widehat{ACB}=\widehat{ABC}\)( tam giác cân)

nên ACE=BCE=ABD=CBD

xét tam giác ABD và tam giác ACE có

ABD=ACE(cmt) ; góc A chung ; AB=AC(tam giác cân)

=> tam giác ABD=tam giác ACE (G-C-G) => BD=CE

b/ ta có BCE=CBD (cmt) => tam giác BIC cân tại I

xét tam giácBIE và tam giác CID có

BI=IC(tam giác BIC cân) ; BIE=ICD(ABD=ACE) ; BIE=CID(2 góc đối đỉnh)

=> tam giác BIE= tam giác CID (G-C-G)

c/ ta có BD, CE là tia p/g cắt nhau tại I => I là gđ của 3 đg phân giác của tam giác ABC

=> AI là tia phân giác của BAC 

ta có AB=AE+BE ; AC=AD+DC 

mà BE=CD ( tam giác BIE= tam giác CID) ; AB=AC (tam giác ABC cân)

nên AE=AD => tam giác AED cân 

mặt khác AI là tia phân giác => AI là đường cao => AI vuông góc vs ED

ta có \(\hept{\begin{cases}\widehat{AED}=\frac{180^0-\widehat{A}}{2}\\\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\end{cases}}\)(tam giác cân)

=> AED=ABC

mà 2 góc nằm ở vị trí đồng vị => ED//BC 

4 tháng 7 2017

A B C E D I

A) Ta có \(\Delta\)ABC cân tại A =>góc ABC= góc ACB => \(\frac{1}{2}\)góc ABC =\(\frac{1}{2}\)góc ACB => góc DBC = góc ECB = góc DBE = góc DCE  

Xét \(\Delta\)ECB và \(\Delta\)DBC có

-góc DBC = góc ECB

- BC chung 

-góc EBC = góc DCB

=> \(\Delta\)ECB = \(\Delta\)DBC ( g.c.g )

=> CE =BD

B, Ta có góc IBC = góc ICB ( góc DBC =góc ECB chứng minh trên )

=> \(\Delta\)IBC cân tại I => BI = CI

Xét \(\Delta\)BIE và \(\Delta\)CID có 

- góc BIE = góc CID ( 2 góc đối đỉnh )

- IB =CI ( chứng minh trên )

- góc IBE =ICD ( chứng minh trên ý a )

=> \(\Delta\)BIE =\(\Delta\)CID (g.c.g)

C, Ta có AB =AC ( \(\Delta\)ABC cân tại A )

Mà BE =CD ( \(\Delta\) EBD =\(\Delta\)DCE )

=> AE =AD (1)

Lại có BD =CE ( chứng minh trên ý a )

Mà BI =CI ( chứng minh trên )

=> EI =ID (2)

Từ (1) và (2) => AI là đường trung trực của ED 

=> AI \(⊥\)ED 

Ta có \(\Delta\)EAD cân tại A có Ai là đường phân giác => góc EAI = góc DAI 

Lại có \(\Delta\)ABC cân tại A có AI là tia phân giác đồng thời là đường cao => AI \(⊥\)BC

\(\hept{\begin{cases}AI⊥DE\\AI⊥BC\end{cases}}\)

=> ED sog sog BC

Chúc bạn học giỏi 

 Kết bạn với mình nha 

8 tháng 5 2016

??????

20 tháng 8 2016

bài này mình học

rùi nhưng ko nhớ

8 tháng 4 2017

Bạn tự vẽ hình

a Xét tam giác ABD và tam giác ACE có

góc BEC= góc CDB= 90 độ

AB=AC

AH chung

suy ra tam giác ABD= tam giác ACE(c.g.c)

b) Vì tam giác ABD= tam giác ACE( theo a)

 suy ra BD=CEhay BH=CH( 2canhj tương ứng)

Xét tam giác BHC có

BH= CH

suy ra tam giác BHC cân tại H

5 tháng 12 2018

mình có 1 tấm ảnh giống i hít ảnh đại diện của bạn luôn

2 tháng 5 2017

a) Xét ∆BDC và ∆CEB, có:

góc BDC = góc CEB = 90°

BC: cạnh chung

góc DCB = góc EBC (gt)

Vậy ∆BDC = ∆CEB (ch-gn)

b) Có: ∆BDC =∆CEB (cmt)

=> góc DBC = góc ECB (2 góc tương ứng)

Có: góc EBC = góc EBI +góc DBC

      góc DCB = góc DCI + góc ECB

Mà: góc EBC = góc DCB (gt)

       góc  DBC = góc ECB (cmt)

Nên: góc EBI = góc DCI

c) Có: EB = DC (∆CEB = ∆BDC)

           AB = AC (gt)

Mà: AE + EB = AB

        AD + DC = AC

Nên: AE = AD

Xét ∆AEI và ∆ADI, có:

góc AEI = góc ADI = 90°

AE = AD (cmt)

Ai: cạnh chung

Vậy ∆AEI = ∆ADI (ch-cgv)

=> góc EAI = góc DAI (2 góc tương ứng)

Xét ∆ABH và ∆ACH có:

góc ABH = góc ACH (gt)

AB = AC ( gt)

góc EAI = góc DAI (cmt)

Vậy ∆ABH = ∆ACH (g-c-g)

=> góc AHB = góc AHC (2góc tương ứng)

Có: góc AHB + góc AHC = 180° (2góc kề bù)

     góc AHB = góc AHC (cmt)

Nên: góc AHB = góc AHC = 180° ÷ 2 = 90°

Vậy AH _|_ BC

" Tớ hem biết câu d, chúc bạn may mắn ;-)"

23 tháng 5 2023

a) Ta có $\angle ABD = \angle EBD$ (vì BD là phân giác của góc $\angle ABC$), và $\angle ADB = \angle EDB = 90^\circ$ (vì DE vuông góc với BC). Vậy tam giác ABD và tam giác EBD có cặp góc đồng nhất, nên chúng bằng nhau theo trường hợp góc - góc - góc của các tam giác đồng dạng. Do đó, ta có tam giác ABD = tam giác EBD.

b) Ta cần chứng minh AH song song với DE, và tam giác AID cân.

Ta có $\angle ABD = \angle EBD$ (theo phần a)), và $\angle ADB = \angle EDB = 90^\circ$ (vì DE vuông góc với BC). Vậy tam giác ABD và tam giác EBD đồng dạng. Do đó:

$$\frac{AB}{EB} = \frac{BD}{BD} = 1$$

$$\Rightarrow AB = EB$$

Mà $AH$ là đường cao của tam giác $ABC$, nên $AB = AH \cos(\widehat{BAC})$. Tương tự, ta có $EB = ED \cos(\widehat{BAC})$. Vậy:

$$\frac{AH}{ED} = \frac{AB}{EB} = 1$$

Do đó, $AH = ED$, hay $AH$ song song với $DE$.

Tiếp theo, ta chứng minh tam giác $AID$ cân. Ta có:

$$\angle AID = \angle BID - \angle BIA = \frac{1}{2} \angle ABC - \angle BAC$$

Mà $\angle ABC = 90^\circ + \angle BAC$, nên:

$$\angle AID = \frac{1}{2}(90^\circ + \angle BAC) - \angle BAC = \frac{1}{2}(90^\circ - \angle BAC)$$

Tương tự, ta có:

$$\angle ADI = \frac{1}{2} \angle ADB = \frac{1}{2} \cdot 90^\circ = 45^\circ$$

Vậy tam giác $AID$ có hai góc bằng nhau là $\angle AID$ và $\angle ADI$, nên đó là tam giác cân.

Vậy, ta đã chứng minh được rằng $AH$ song song với $DE$, và tam giác $AID$ cân.

23 tháng 5 2023

Xem lại KHỐI LỚP và cách áp dụng KIẾN THỨC như thế nào cho đúng với lứa tuổi.