Tìm số tự nhiên n để 2n + 3 và 8n + 9 là 2 số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Gọi ƯCLN(7n+3; 8n -1) = d ( d thuộc N*)
=> 7n+3 chia hết cho d
=> 8n-1 chia hết cho d
=>8(7n+3) chia hết cho d
=>7(8n-1) chia hết cho d
=>56n+24 chia hết cho d
=>56n-7 chia hết cho d
=> (56n+24) - (56n - 7) chia hết cho d
=> 31 chia hết cho d
Mà d thuộc N*
=> d thuộc { 1; 31}
Giả sử d =31
=> 7n + 3 chia hết cho 31
=> 7n+3 - 31 chia hết cho 31 ( do 31 chia hết cho 31)
=> 7n -28 chi hết cho 31
=>7(n-4) chia hết cho 31
Mà (7,31) =1
=> n-4 chia hết cho 31
=>n chia 31 dư4
=> n thuộc { 4 ; 35 ; 66 ; 97 ; ........}
Vậy để thỏa mãn thì điều kiện của n : n từ 40 đến 90 và khác 66
gọi d là ước chung lớn nhất của 2n + 3 và 4n + 1
ta có : 2n + 3 : hết cho d , 4n + 1 : hết cho d
=> 2( 2n + 3) : hết cho d , 4n + 1 : hết cho d
=> ( 4n + 6) - ( 4n + 1) : hết cho d
=> 5 : hết cho d
=> d \(\varepsilon\){ 5}
mà 4n + 1 ko : hết cho 5
=> 4n : hết cho 5
=> n : hết cho 5
=> n \(\varepsilon\)5k
gọi d là ước chung lớn nhất của 2n + 3 và 4n + 1
ta có : 2n + 3 : hết cho d , 4n + 1 : hết cho d
=> 2( 2n + 3) : hết cho d , 4n + 1 : hết cho d
=> ( 4n + 6) - ( 4n + 1) : hết cho d
=> 5 : hết cho d
=> d ε{ 5}
mà 4n + 1 ko : hết cho 5
=> 4n : hết cho 5
=> n : hết cho 5
=> n ε 5k
chúc bn hok tốt @+_@
Vì 2n+3 là số lẻ
và 8n+10 là số chẵn
nên 2n+3 và 8n+10 là hai số nguyên tố cùng nhau